AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.552 | 0.466 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.715 |
Model: | OLS | Adj. R-squared: | 0.671 |
Method: | Least Squares | F-statistic: | 15.92 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.03e-05 |
Time: | 22:50:42 | Log-Likelihood: | -98.652 |
No. Observations: | 23 | AIC: | 205.3 |
Df Residuals: | 19 | BIC: | 209.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1415.5566 | 1104.221 | -1.282 | 0.215 | -3726.718 895.605 |
C(dose)[T.1] | 2517.9473 | 1261.499 | 1.996 | 0.060 | -122.400 5158.295 |
expression | 120.5578 | 90.573 | 1.331 | 0.199 | -69.013 310.129 |
expression:C(dose)[T.1] | -201.2388 | 103.201 | -1.950 | 0.066 | -417.240 14.763 |
Omnibus: | 1.014 | Durbin-Watson: | 1.753 |
Prob(Omnibus): | 0.602 | Jarque-Bera (JB): | 0.693 |
Skew: | 0.413 | Prob(JB): | 0.707 |
Kurtosis: | 2.799 | Cond. No. | 5.63e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.624 |
Method: | Least Squares | F-statistic: | 19.28 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.16e-05 |
Time: | 22:50:43 | Log-Likelihood: | -100.75 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 20 | BIC: | 210.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 474.1543 | 565.170 | 0.839 | 0.411 | -704.770 1653.079 |
C(dose)[T.1] | 58.1327 | 10.793 | 5.386 | 0.000 | 35.619 80.647 |
expression | -34.4462 | 46.356 | -0.743 | 0.466 | -131.142 62.250 |
Omnibus: | 1.577 | Durbin-Watson: | 1.861 |
Prob(Omnibus): | 0.454 | Jarque-Bera (JB): | 1.027 |
Skew: | 0.180 | Prob(JB): | 0.598 |
Kurtosis: | 2.030 | Cond. No. | 1.62e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:50:43 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.163 |
Model: | OLS | Adj. R-squared: | 0.123 |
Method: | Least Squares | F-statistic: | 4.093 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0560 |
Time: | 22:50:43 | Log-Likelihood: | -111.06 |
No. Observations: | 23 | AIC: | 226.1 |
Df Residuals: | 21 | BIC: | 228.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1328.0097 | 695.825 | -1.909 | 0.070 | -2775.057 119.038 |
expression | 114.8419 | 56.763 | 2.023 | 0.056 | -3.202 232.886 |
Omnibus: | 2.632 | Durbin-Watson: | 2.130 |
Prob(Omnibus): | 0.268 | Jarque-Bera (JB): | 1.867 |
Skew: | 0.515 | Prob(JB): | 0.393 |
Kurtosis: | 2.057 | Cond. No. | 1.30e+03 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.693 | 0.034 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.627 |
Model: | OLS | Adj. R-squared: | 0.526 |
Method: | Least Squares | F-statistic: | 6.173 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0102 |
Time: | 22:50:43 | Log-Likelihood: | -67.897 |
No. Observations: | 15 | AIC: | 143.8 |
Df Residuals: | 11 | BIC: | 146.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -827.7664 | 687.321 | -1.204 | 0.254 | -2340.549 685.016 |
C(dose)[T.1] | -125.2056 | 890.235 | -0.141 | 0.891 | -2084.599 1834.188 |
expression | 76.0588 | 58.391 | 1.303 | 0.219 | -52.459 204.577 |
expression:C(dose)[T.1] | 14.3446 | 75.470 | 0.190 | 0.853 | -151.763 180.452 |
Omnibus: | 1.142 | Durbin-Watson: | 1.261 |
Prob(Omnibus): | 0.565 | Jarque-Bera (JB): | 0.865 |
Skew: | -0.303 | Prob(JB): | 0.649 |
Kurtosis: | 1.991 | Cond. No. | 2.18e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.626 |
Model: | OLS | Adj. R-squared: | 0.564 |
Method: | Least Squares | F-statistic: | 10.05 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00273 |
Time: | 22:50:43 | Log-Likelihood: | -67.921 |
No. Observations: | 15 | AIC: | 141.8 |
Df Residuals: | 12 | BIC: | 144.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -928.8316 | 417.662 | -2.224 | 0.046 | -1838.840 -18.823 |
C(dose)[T.1] | 43.9813 | 13.145 | 3.346 | 0.006 | 15.340 72.623 |
expression | 84.6456 | 35.477 | 2.386 | 0.034 | 7.348 161.943 |
Omnibus: | 1.602 | Durbin-Watson: | 1.308 |
Prob(Omnibus): | 0.449 | Jarque-Bera (JB): | 0.985 |
Skew: | -0.287 | Prob(JB): | 0.611 |
Kurtosis: | 1.884 | Cond. No. | 769. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:50:43 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.277 |
Model: | OLS | Adj. R-squared: | 0.222 |
Method: | Least Squares | F-statistic: | 4.990 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0437 |
Time: | 22:50:43 | Log-Likelihood: | -72.864 |
No. Observations: | 15 | AIC: | 149.7 |
Df Residuals: | 13 | BIC: | 151.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1138.3138 | 551.576 | -2.064 | 0.060 | -2329.922 53.295 |
expression | 104.3818 | 46.728 | 2.234 | 0.044 | 3.433 205.331 |
Omnibus: | 1.090 | Durbin-Watson: | 2.197 |
Prob(Omnibus): | 0.580 | Jarque-Bera (JB): | 0.886 |
Skew: | 0.356 | Prob(JB): | 0.642 |
Kurtosis: | 2.046 | Cond. No. | 759. |