AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.415 | 0.527 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.608 |
Method: | Least Squares | F-statistic: | 12.35 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.000103 |
Time: | 22:46:21 | Log-Likelihood: | -100.66 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 85.3938 | 219.411 | 0.389 | 0.701 | -373.839 544.626 |
C(dose)[T.1] | -79.2186 | 252.811 | -0.313 | 0.757 | -608.359 449.922 |
expression | -3.5558 | 25.007 | -0.142 | 0.888 | -55.897 48.785 |
expression:C(dose)[T.1] | 15.0562 | 28.772 | 0.523 | 0.607 | -45.165 75.278 |
Omnibus: | 0.237 | Durbin-Watson: | 2.023 |
Prob(Omnibus): | 0.888 | Jarque-Bera (JB): | 0.431 |
Skew: | -0.085 | Prob(JB): | 0.806 |
Kurtosis: | 2.351 | Cond. No. | 741. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.09 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 2.31e-05 |
Time: | 22:46:21 | Log-Likelihood: | -100.83 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -14.3582 | 106.651 | -0.135 | 0.894 | -236.827 208.111 |
C(dose)[T.1] | 52.9929 | 8.697 | 6.093 | 0.000 | 34.852 71.134 |
expression | 7.8179 | 12.141 | 0.644 | 0.527 | -17.508 33.144 |
Omnibus: | 0.061 | Durbin-Watson: | 1.838 |
Prob(Omnibus): | 0.970 | Jarque-Bera (JB): | 0.284 |
Skew: | 0.002 | Prob(JB): | 0.868 |
Kurtosis: | 2.455 | Cond. No. | 220. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:46:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.018 |
Model: | OLS | Adj. R-squared: | -0.029 |
Method: | Least Squares | F-statistic: | 0.3827 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.543 |
Time: | 22:46:21 | Log-Likelihood: | -112.90 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -28.9922 | 175.863 | -0.165 | 0.871 | -394.718 336.734 |
expression | 12.3653 | 19.987 | 0.619 | 0.543 | -29.200 53.931 |
Omnibus: | 4.652 | Durbin-Watson: | 2.453 |
Prob(Omnibus): | 0.098 | Jarque-Bera (JB): | 1.714 |
Skew: | 0.229 | Prob(JB): | 0.424 |
Kurtosis: | 1.744 | Cond. No. | 219. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
6.297 | 0.027 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.639 |
Model: | OLS | Adj. R-squared: | 0.540 |
Method: | Least Squares | F-statistic: | 6.476 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00872 |
Time: | 22:46:21 | Log-Likelihood: | -67.669 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 11 | BIC: | 146.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 497.4783 | 423.658 | 1.174 | 0.265 | -434.988 1429.944 |
C(dose)[T.1] | 54.8809 | 468.621 | 0.117 | 0.909 | -976.546 1086.308 |
expression | -56.1101 | 55.262 | -1.015 | 0.332 | -177.740 65.520 |
expression:C(dose)[T.1] | 1.6400 | 60.659 | 0.027 | 0.979 | -131.869 135.149 |
Omnibus: | 2.298 | Durbin-Watson: | 0.999 |
Prob(Omnibus): | 0.317 | Jarque-Bera (JB): | 1.033 |
Skew: | -0.639 | Prob(JB): | 0.597 |
Kurtosis: | 3.136 | Cond. No. | 869. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.638 |
Model: | OLS | Adj. R-squared: | 0.578 |
Method: | Least Squares | F-statistic: | 10.60 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00223 |
Time: | 22:46:21 | Log-Likelihood: | -67.669 |
No. Observations: | 15 | AIC: | 141.3 |
Df Residuals: | 12 | BIC: | 143.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 487.0459 | 167.480 | 2.908 | 0.013 | 122.139 851.953 |
C(dose)[T.1] | 67.5440 | 14.695 | 4.596 | 0.001 | 35.527 99.561 |
expression | -54.7490 | 21.818 | -2.509 | 0.027 | -102.286 -7.212 |
Omnibus: | 2.377 | Durbin-Watson: | 0.995 |
Prob(Omnibus): | 0.305 | Jarque-Bera (JB): | 1.064 |
Skew: | -0.648 | Prob(JB): | 0.587 |
Kurtosis: | 3.158 | Cond. No. | 211. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:46:21 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.002 |
Model: | OLS | Adj. R-squared: | -0.075 |
Method: | Least Squares | F-statistic: | 0.02578 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.875 |
Time: | 22:46:21 | Log-Likelihood: | -75.285 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 131.7110 | 237.167 | 0.555 | 0.588 | -380.657 644.079 |
expression | -4.8507 | 30.211 | -0.161 | 0.875 | -70.118 60.417 |
Omnibus: | 0.502 | Durbin-Watson: | 1.658 |
Prob(Omnibus): | 0.778 | Jarque-Bera (JB): | 0.544 |
Skew: | 0.067 | Prob(JB): | 0.762 |
Kurtosis: | 2.076 | Cond. No. | 186. |