AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.787 | 0.386 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 12.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.61e-05 |
Time: | 04:36:54 | Log-Likelihood: | -100.44 |
No. Observations: | 23 | AIC: | 208.9 |
Df Residuals: | 19 | BIC: | 213.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 274.6085 | 214.270 | 1.282 | 0.215 | -173.863 723.080 |
C(dose)[T.1] | -144.9471 | 350.338 | -0.414 | 0.684 | -878.213 588.318 |
expression | -25.9896 | 25.257 | -1.029 | 0.316 | -78.852 26.873 |
expression:C(dose)[T.1] | 23.2973 | 42.140 | 0.553 | 0.587 | -64.903 111.498 |
Omnibus: | 0.926 | Durbin-Watson: | 2.179 |
Prob(Omnibus): | 0.630 | Jarque-Bera (JB): | 0.818 |
Skew: | -0.200 | Prob(JB): | 0.664 |
Kurtosis: | 2.167 | Cond. No. | 828. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 19.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.93e-05 |
Time: | 04:36:54 | Log-Likelihood: | -100.62 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 203.6387 | 168.555 | 1.208 | 0.241 | -147.960 555.238 |
C(dose)[T.1] | 48.6545 | 10.093 | 4.821 | 0.000 | 27.601 69.708 |
expression | -17.6208 | 19.864 | -0.887 | 0.386 | -59.056 23.814 |
Omnibus: | 0.619 | Durbin-Watson: | 2.089 |
Prob(Omnibus): | 0.734 | Jarque-Bera (JB): | 0.594 |
Skew: | -0.337 | Prob(JB): | 0.743 |
Kurtosis: | 2.592 | Cond. No. | 333. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:36:54 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.270 |
Model: | OLS | Adj. R-squared: | 0.235 |
Method: | Least Squares | F-statistic: | 7.767 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0110 |
Time: | 04:36:54 | Log-Likelihood: | -109.49 |
No. Observations: | 23 | AIC: | 223.0 |
Df Residuals: | 21 | BIC: | 225.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 645.2614 | 203.024 | 3.178 | 0.005 | 223.049 1067.473 |
expression | -67.7037 | 24.294 | -2.787 | 0.011 | -118.225 -17.182 |
Omnibus: | 0.699 | Durbin-Watson: | 2.667 |
Prob(Omnibus): | 0.705 | Jarque-Bera (JB): | 0.698 |
Skew: | -0.156 | Prob(JB): | 0.705 |
Kurtosis: | 2.205 | Cond. No. | 279. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.996 | 0.183 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.592 |
Model: | OLS | Adj. R-squared: | 0.480 |
Method: | Least Squares | F-statistic: | 5.312 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0166 |
Time: | 04:36:54 | Log-Likelihood: | -68.583 |
No. Observations: | 15 | AIC: | 145.2 |
Df Residuals: | 11 | BIC: | 148.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 100.9906 | 174.767 | 0.578 | 0.575 | -283.668 485.650 |
C(dose)[T.1] | 383.0144 | 257.001 | 1.490 | 0.164 | -182.641 948.670 |
expression | -3.9315 | 20.436 | -0.192 | 0.851 | -48.911 41.049 |
expression:C(dose)[T.1] | -39.9723 | 30.387 | -1.315 | 0.215 | -106.854 26.910 |
Omnibus: | 0.818 | Durbin-Watson: | 1.455 |
Prob(Omnibus): | 0.664 | Jarque-Bera (JB): | 0.691 |
Skew: | -0.185 | Prob(JB): | 0.708 |
Kurtosis: | 2.016 | Cond. No. | 406. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.527 |
Model: | OLS | Adj. R-squared: | 0.449 |
Method: | Least Squares | F-statistic: | 6.696 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0111 |
Time: | 04:36:54 | Log-Likelihood: | -69.679 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 12 | BIC: | 147.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 255.3298 | 133.410 | 1.914 | 0.080 | -35.345 546.005 |
C(dose)[T.1] | 45.4772 | 14.810 | 3.071 | 0.010 | 13.210 77.745 |
expression | -22.0107 | 15.578 | -1.413 | 0.183 | -55.952 11.930 |
Omnibus: | 1.818 | Durbin-Watson: | 1.301 |
Prob(Omnibus): | 0.403 | Jarque-Bera (JB): | 1.121 |
Skew: | -0.371 | Prob(JB): | 0.571 |
Kurtosis: | 1.885 | Cond. No. | 158. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:36:54 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.156 |
Model: | OLS | Adj. R-squared: | 0.091 |
Method: | Least Squares | F-statistic: | 2.403 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.145 |
Time: | 04:36:54 | Log-Likelihood: | -74.028 |
No. Observations: | 15 | AIC: | 152.1 |
Df Residuals: | 13 | BIC: | 153.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 351.3993 | 166.510 | 2.110 | 0.055 | -8.324 711.123 |
expression | -30.5128 | 19.682 | -1.550 | 0.145 | -73.033 12.008 |
Omnibus: | 0.214 | Durbin-Watson: | 1.901 |
Prob(Omnibus): | 0.899 | Jarque-Bera (JB): | 0.404 |
Skew: | -0.066 | Prob(JB): | 0.817 |
Kurtosis: | 2.207 | Cond. No. | 153. |