AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.058 0.813 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 12.02
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000122
Time: 03:49:57 Log-Likelihood: -100.87
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.0740 100.809 0.784 0.442 -131.922 290.070
C(dose)[T.1] -12.6424 129.040 -0.098 0.923 -282.727 257.442
expression -3.7239 15.069 -0.247 0.807 -35.263 27.816
expression:C(dose)[T.1] 10.1389 19.597 0.517 0.611 -30.878 51.156
Omnibus: 0.108 Durbin-Watson: 1.921
Prob(Omnibus): 0.947 Jarque-Bera (JB): 0.327
Skew: 0.064 Prob(JB): 0.849
Kurtosis: 2.430 Cond. No. 263.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.75e-05
Time: 03:49:57 Log-Likelihood: -101.03
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.0441 63.429 0.616 0.545 -93.267 171.355
C(dose)[T.1] 53.9465 9.117 5.917 0.000 34.928 72.965
expression 2.2710 9.456 0.240 0.813 -17.453 21.995
Omnibus: 0.228 Durbin-Watson: 1.859
Prob(Omnibus): 0.892 Jarque-Bera (JB): 0.425
Skew: 0.046 Prob(JB): 0.808
Kurtosis: 2.340 Cond. No. 97.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:49:57 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.038
Model: OLS Adj. R-squared: -0.008
Method: Least Squares F-statistic: 0.8185
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.376
Time: 03:49:57 Log-Likelihood: -112.66
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 166.8108 96.527 1.728 0.099 -33.928 367.550
expression -13.2987 14.699 -0.905 0.376 -43.868 17.271
Omnibus: 2.524 Durbin-Watson: 2.521
Prob(Omnibus): 0.283 Jarque-Bera (JB): 1.529
Skew: 0.368 Prob(JB): 0.465
Kurtosis: 1.973 Cond. No. 91.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.734 0.050 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.608
Model: OLS Adj. R-squared: 0.501
Method: Least Squares F-statistic: 5.676
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0134
Time: 03:49:57 Log-Likelihood: -68.285
No. Observations: 15 AIC: 144.6
Df Residuals: 11 BIC: 147.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 222.8603 88.610 2.515 0.029 27.831 417.889
C(dose)[T.1] 27.4088 146.090 0.188 0.855 -294.132 348.950
expression -26.6155 15.074 -1.766 0.105 -59.793 6.562
expression:C(dose)[T.1] 6.4900 23.046 0.282 0.783 -44.234 57.214
Omnibus: 4.052 Durbin-Watson: 0.990
Prob(Omnibus): 0.132 Jarque-Bera (JB): 1.622
Skew: -0.651 Prob(JB): 0.444
Kurtosis: 3.949 Cond. No. 176.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.605
Model: OLS Adj. R-squared: 0.539
Method: Least Squares F-statistic: 9.179
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00381
Time: 03:49:57 Log-Likelihood: -68.339
No. Observations: 15 AIC: 142.7
Df Residuals: 12 BIC: 144.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 206.6456 64.718 3.193 0.008 65.636 347.655
C(dose)[T.1] 68.2830 15.956 4.279 0.001 33.518 103.048
expression -23.8390 10.956 -2.176 0.050 -47.710 0.032
Omnibus: 3.779 Durbin-Watson: 0.961
Prob(Omnibus): 0.151 Jarque-Bera (JB): 1.443
Skew: -0.599 Prob(JB): 0.486
Kurtosis: 3.935 Cond. No. 63.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:49:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.075
Method: Least Squares F-statistic: 0.01921
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.892
Time: 03:49:57 Log-Likelihood: -75.289
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 81.5289 88.168 0.925 0.372 -108.946 272.004
expression 1.9368 13.975 0.139 0.892 -28.255 32.128
Omnibus: 0.450 Durbin-Watson: 1.576
Prob(Omnibus): 0.799 Jarque-Bera (JB): 0.519
Skew: -0.005 Prob(JB): 0.771
Kurtosis: 2.089 Cond. No. 56.1