AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.279 | 0.603 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.600 |
Method: | Least Squares | F-statistic: | 12.02 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000122 |
Time: | 04:37:09 | Log-Likelihood: | -100.87 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 101.2183 | 86.601 | 1.169 | 0.257 | -80.040 282.477 |
C(dose)[T.1] | 22.1355 | 129.306 | 0.171 | 0.866 | -248.504 292.775 |
expression | -6.9876 | 12.840 | -0.544 | 0.593 | -33.861 19.886 |
expression:C(dose)[T.1] | 4.6187 | 19.260 | 0.240 | 0.813 | -35.694 44.931 |
Omnibus: | 0.375 | Durbin-Watson: | 1.899 |
Prob(Omnibus): | 0.829 | Jarque-Bera (JB): | 0.519 |
Skew: | 0.093 | Prob(JB): | 0.771 |
Kurtosis: | 2.288 | Cond. No. | 252. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.89 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.47e-05 |
Time: | 04:37:09 | Log-Likelihood: | -100.90 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 87.4095 | 63.140 | 1.384 | 0.181 | -44.297 219.116 |
C(dose)[T.1] | 53.0690 | 8.724 | 6.083 | 0.000 | 34.871 71.267 |
expression | -4.9350 | 9.342 | -0.528 | 0.603 | -24.423 14.553 |
Omnibus: | 0.305 | Durbin-Watson: | 1.944 |
Prob(Omnibus): | 0.858 | Jarque-Bera (JB): | 0.478 |
Skew: | 0.137 | Prob(JB): | 0.787 |
Kurtosis: | 2.349 | Cond. No. | 99.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:37:09 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.033 |
Method: | Least Squares | F-statistic: | 0.2877 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.597 |
Time: | 04:37:09 | Log-Likelihood: | -112.95 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 134.9500 | 103.226 | 1.307 | 0.205 | -79.721 349.621 |
expression | -8.2416 | 15.366 | -0.536 | 0.597 | -40.197 23.714 |
Omnibus: | 2.407 | Durbin-Watson: | 2.544 |
Prob(Omnibus): | 0.300 | Jarque-Bera (JB): | 1.448 |
Skew: | 0.338 | Prob(JB): | 0.485 |
Kurtosis: | 1.974 | Cond. No. | 98.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.926 | 0.071 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.602 |
Model: | OLS | Adj. R-squared: | 0.494 |
Method: | Least Squares | F-statistic: | 5.549 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0144 |
Time: | 04:37:09 | Log-Likelihood: | -68.388 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 11 | BIC: | 147.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 269.0100 | 191.642 | 1.404 | 0.188 | -152.791 690.811 |
C(dose)[T.1] | 226.5122 | 287.548 | 0.788 | 0.447 | -406.376 859.401 |
expression | -28.5518 | 27.106 | -1.053 | 0.315 | -88.211 31.107 |
expression:C(dose)[T.1] | -29.5966 | 42.602 | -0.695 | 0.502 | -123.364 64.171 |
Omnibus: | 1.261 | Durbin-Watson: | 1.494 |
Prob(Omnibus): | 0.532 | Jarque-Bera (JB): | 0.782 |
Skew: | -0.057 | Prob(JB): | 0.676 |
Kurtosis: | 1.887 | Cond. No. | 364. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.585 |
Model: | OLS | Adj. R-squared: | 0.515 |
Method: | Least Squares | F-statistic: | 8.446 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00513 |
Time: | 04:37:09 | Log-Likelihood: | -68.710 |
No. Observations: | 15 | AIC: | 143.4 |
Df Residuals: | 12 | BIC: | 145.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 353.5976 | 144.766 | 2.443 | 0.031 | 38.179 669.016 |
C(dose)[T.1] | 27.1405 | 17.623 | 1.540 | 0.149 | -11.256 65.537 |
expression | -40.5328 | 20.456 | -1.981 | 0.071 | -85.102 4.037 |
Omnibus: | 2.943 | Durbin-Watson: | 1.573 |
Prob(Omnibus): | 0.230 | Jarque-Bera (JB): | 1.142 |
Skew: | -0.125 | Prob(JB): | 0.565 |
Kurtosis: | 1.672 | Cond. No. | 148. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:37:09 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.503 |
Model: | OLS | Adj. R-squared: | 0.464 |
Method: | Least Squares | F-statistic: | 13.13 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00309 |
Time: | 04:37:09 | Log-Likelihood: | -70.063 |
No. Observations: | 15 | AIC: | 144.1 |
Df Residuals: | 13 | BIC: | 145.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 502.7853 | 113.114 | 4.445 | 0.001 | 258.417 747.153 |
expression | -60.4313 | 16.675 | -3.624 | 0.003 | -96.455 -24.408 |
Omnibus: | 1.065 | Durbin-Watson: | 1.801 |
Prob(Omnibus): | 0.587 | Jarque-Bera (JB): | 0.768 |
Skew: | 0.181 | Prob(JB): | 0.681 |
Kurtosis: | 1.952 | Cond. No. | 109. |