AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.187 | 0.670 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.684 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 13.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.33e-05 |
Time: | 05:22:45 | Log-Likelihood: | -99.842 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -602.4686 | 583.367 | -1.033 | 0.315 | -1823.469 618.532 |
C(dose)[T.1] | 1566.6360 | 1092.200 | 1.434 | 0.168 | -719.365 3852.637 |
expression | 58.5407 | 52.003 | 1.126 | 0.274 | -50.302 167.384 |
expression:C(dose)[T.1] | -133.2392 | 95.849 | -1.390 | 0.181 | -333.854 67.376 |
Omnibus: | 0.077 | Durbin-Watson: | 1.774 |
Prob(Omnibus): | 0.962 | Jarque-Bera (JB): | 0.050 |
Skew: | 0.022 | Prob(JB): | 0.975 |
Kurtosis: | 2.777 | Cond. No. | 3.50e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 18.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.58e-05 |
Time: | 05:22:45 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -162.5220 | 501.346 | -0.324 | 0.749 | -1208.311 883.267 |
C(dose)[T.1] | 48.5010 | 14.189 | 3.418 | 0.003 | 18.903 78.099 |
expression | 19.3208 | 44.690 | 0.432 | 0.670 | -73.901 112.543 |
Omnibus: | 0.373 | Durbin-Watson: | 1.939 |
Prob(Omnibus): | 0.830 | Jarque-Bera (JB): | 0.521 |
Skew: | 0.123 | Prob(JB): | 0.770 |
Kurtosis: | 2.304 | Cond. No. | 1.32e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:22:45 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.423 |
Method: | Least Squares | F-statistic: | 17.12 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000467 |
Time: | 05:22:45 | Log-Likelihood: | -106.25 |
No. Observations: | 23 | AIC: | 216.5 |
Df Residuals: | 21 | BIC: | 218.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1504.6754 | 382.905 | -3.930 | 0.001 | -2300.970 -708.381 |
expression | 139.7524 | 33.771 | 4.138 | 0.000 | 69.522 209.983 |
Omnibus: | 3.674 | Durbin-Watson: | 2.092 |
Prob(Omnibus): | 0.159 | Jarque-Bera (JB): | 2.496 |
Skew: | 0.805 | Prob(JB): | 0.287 |
Kurtosis: | 3.096 | Cond. No. | 817. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.554 | 0.471 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.524 |
Model: | OLS | Adj. R-squared: | 0.395 |
Method: | Least Squares | F-statistic: | 4.041 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0366 |
Time: | 05:22:45 | Log-Likelihood: | -69.728 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 11 | BIC: | 150.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -859.9142 | 708.608 | -1.214 | 0.250 | -2419.550 699.721 |
C(dose)[T.1] | 912.2343 | 792.155 | 1.152 | 0.274 | -831.287 2655.755 |
expression | 87.8364 | 67.110 | 1.309 | 0.217 | -59.871 235.544 |
expression:C(dose)[T.1] | -81.7074 | 75.112 | -1.088 | 0.300 | -247.027 83.613 |
Omnibus: | 2.280 | Durbin-Watson: | 1.169 |
Prob(Omnibus): | 0.320 | Jarque-Bera (JB): | 1.531 |
Skew: | -0.762 | Prob(JB): | 0.465 |
Kurtosis: | 2.647 | Cond. No. | 1.67e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.473 |
Model: | OLS | Adj. R-squared: | 0.385 |
Method: | Least Squares | F-statistic: | 5.388 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0214 |
Time: | 05:22:45 | Log-Likelihood: | -70.494 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -171.2883 | 320.836 | -0.534 | 0.603 | -870.330 527.754 |
C(dose)[T.1] | 50.6832 | 15.517 | 3.266 | 0.007 | 16.874 84.492 |
expression | 22.6109 | 30.370 | 0.745 | 0.471 | -43.561 88.782 |
Omnibus: | 2.640 | Durbin-Watson: | 0.807 |
Prob(Omnibus): | 0.267 | Jarque-Bera (JB): | 1.991 |
Skew: | -0.784 | Prob(JB): | 0.370 |
Kurtosis: | 2.146 | Cond. No. | 444. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:22:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.072 |
Method: | Least Squares | F-statistic: | 0.06127 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.808 |
Time: | 05:22:45 | Log-Likelihood: | -75.265 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -9.9243 | 418.611 | -0.024 | 0.981 | -914.278 894.430 |
expression | 9.8447 | 39.771 | 0.248 | 0.808 | -76.075 95.764 |
Omnibus: | 0.972 | Durbin-Watson: | 1.668 |
Prob(Omnibus): | 0.615 | Jarque-Bera (JB): | 0.713 |
Skew: | 0.106 | Prob(JB): | 0.700 |
Kurtosis: | 1.953 | Cond. No. | 439. |