AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.186 | 0.289 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 12.80 |
Date: | Thu, 16 Jan 2025 | Prob (F-statistic): | 8.31e-05 |
Time: | 03:41:58 | Log-Likelihood: | -100.39 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 157.5803 | 157.064 | 1.003 | 0.328 | -171.159 486.319 |
C(dose)[T.1] | 33.1361 | 185.720 | 0.178 | 0.860 | -355.581 421.853 |
expression | -28.0961 | 42.658 | -0.659 | 0.518 | -117.380 61.188 |
expression:C(dose)[T.1] | 5.8690 | 50.184 | 0.117 | 0.908 | -99.167 110.905 |
Omnibus: | 1.143 | Durbin-Watson: | 2.097 |
Prob(Omnibus): | 0.565 | Jarque-Bera (JB): | 0.826 |
Skew: | -0.032 | Prob(JB): | 0.662 |
Kurtosis: | 2.074 | Cond. No. | 243. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.636 |
Method: | Least Squares | F-statistic: | 20.18 |
Date: | Thu, 16 Jan 2025 | Prob (F-statistic): | 1.59e-05 |
Time: | 03:41:58 | Log-Likelihood: | -100.40 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 20 | BIC: | 210.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 141.9778 | 80.820 | 1.757 | 0.094 | -26.609 310.565 |
C(dose)[T.1] | 54.8314 | 8.631 | 6.353 | 0.000 | 36.828 72.835 |
expression | -23.8554 | 21.908 | -1.089 | 0.289 | -69.555 21.844 |
Omnibus: | 0.936 | Durbin-Watson: | 2.077 |
Prob(Omnibus): | 0.626 | Jarque-Bera (JB): | 0.756 |
Skew: | -0.035 | Prob(JB): | 0.685 |
Kurtosis: | 2.114 | Cond. No. | 76.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 16 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:41:58 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.002212 |
Date: | Thu, 16 Jan 2025 | Prob (F-statistic): | 0.963 |
Time: | 03:41:58 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.1141 | 136.207 | 0.632 | 0.534 | -197.145 369.373 |
expression | -1.7246 | 36.670 | -0.047 | 0.963 | -77.984 74.535 |
Omnibus: | 3.372 | Durbin-Watson: | 2.496 |
Prob(Omnibus): | 0.185 | Jarque-Bera (JB): | 1.579 |
Skew: | 0.287 | Prob(JB): | 0.454 |
Kurtosis: | 1.852 | Cond. No. | 75.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
93.490 | 0.000 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.943 |
Model: | OLS | Adj. R-squared: | 0.927 |
Method: | Least Squares | F-statistic: | 60.17 |
Date: | Thu, 16 Jan 2025 | Prob (F-statistic): | 4.13e-07 |
Time: | 03:41:58 | Log-Likelihood: | -53.873 |
No. Observations: | 15 | AIC: | 115.7 |
Df Residuals: | 11 | BIC: | 118.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -265.3806 | 71.548 | -3.709 | 0.003 | -422.856 -107.905 |
C(dose)[T.1] | -67.8966 | 88.940 | -0.763 | 0.461 | -263.653 127.860 |
expression | 92.4921 | 19.855 | 4.658 | 0.001 | 48.792 136.192 |
expression:C(dose)[T.1] | 24.2010 | 24.106 | 1.004 | 0.337 | -28.857 77.259 |
Omnibus: | 2.455 | Durbin-Watson: | 1.325 |
Prob(Omnibus): | 0.293 | Jarque-Bera (JB): | 1.079 |
Skew: | 0.166 | Prob(JB): | 0.583 |
Kurtosis: | 1.729 | Cond. No. | 194. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.937 |
Model: | OLS | Adj. R-squared: | 0.927 |
Method: | Least Squares | F-statistic: | 89.69 |
Date: | Thu, 16 Jan 2025 | Prob (F-statistic): | 6.08e-08 |
Time: | 03:41:58 | Log-Likelihood: | -54.530 |
No. Observations: | 15 | AIC: | 115.1 |
Df Residuals: | 12 | BIC: | 117.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -324.4545 | 40.715 | -7.969 | 0.000 | -413.164 -235.745 |
C(dose)[T.1] | 21.1864 | 6.048 | 3.503 | 0.004 | 8.010 34.363 |
expression | 108.9095 | 11.264 | 9.669 | 0.000 | 84.368 133.451 |
Omnibus: | 0.573 | Durbin-Watson: | 1.245 |
Prob(Omnibus): | 0.751 | Jarque-Bera (JB): | 0.568 |
Skew: | 0.003 | Prob(JB): | 0.753 |
Kurtosis: | 2.047 | Cond. No. | 62.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 16 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 03:41:58 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.873 |
Model: | OLS | Adj. R-squared: | 0.863 |
Method: | Least Squares | F-statistic: | 89.49 |
Date: | Thu, 16 Jan 2025 | Prob (F-statistic): | 3.41e-07 |
Time: | 03:41:58 | Log-Likelihood: | -59.814 |
No. Observations: | 15 | AIC: | 123.6 |
Df Residuals: | 13 | BIC: | 125.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -383.7619 | 50.597 | -7.585 | 0.000 | -493.070 -274.454 |
expression | 127.8115 | 13.511 | 9.460 | 0.000 | 98.624 156.999 |
Omnibus: | 1.238 | Durbin-Watson: | 2.315 |
Prob(Omnibus): | 0.538 | Jarque-Bera (JB): | 0.881 |
Skew: | -0.554 | Prob(JB): | 0.644 |
Kurtosis: | 2.574 | Cond. No. | 56.1 |