AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.186 0.289 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 12.80
Date: Thu, 16 Jan 2025 Prob (F-statistic): 8.31e-05
Time: 03:41:58 Log-Likelihood: -100.39
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 157.5803 157.064 1.003 0.328 -171.159 486.319
C(dose)[T.1] 33.1361 185.720 0.178 0.860 -355.581 421.853
expression -28.0961 42.658 -0.659 0.518 -117.380 61.188
expression:C(dose)[T.1] 5.8690 50.184 0.117 0.908 -99.167 110.905
Omnibus: 1.143 Durbin-Watson: 2.097
Prob(Omnibus): 0.565 Jarque-Bera (JB): 0.826
Skew: -0.032 Prob(JB): 0.662
Kurtosis: 2.074 Cond. No. 243.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.18
Date: Thu, 16 Jan 2025 Prob (F-statistic): 1.59e-05
Time: 03:41:58 Log-Likelihood: -100.40
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 141.9778 80.820 1.757 0.094 -26.609 310.565
C(dose)[T.1] 54.8314 8.631 6.353 0.000 36.828 72.835
expression -23.8554 21.908 -1.089 0.289 -69.555 21.844
Omnibus: 0.936 Durbin-Watson: 2.077
Prob(Omnibus): 0.626 Jarque-Bera (JB): 0.756
Skew: -0.035 Prob(JB): 0.685
Kurtosis: 2.114 Cond. No. 76.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 16 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 03:41:58 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.002212
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.963
Time: 03:41:58 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.1141 136.207 0.632 0.534 -197.145 369.373
expression -1.7246 36.670 -0.047 0.963 -77.984 74.535
Omnibus: 3.372 Durbin-Watson: 2.496
Prob(Omnibus): 0.185 Jarque-Bera (JB): 1.579
Skew: 0.287 Prob(JB): 0.454
Kurtosis: 1.852 Cond. No. 75.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
93.490 0.000 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.943
Model: OLS Adj. R-squared: 0.927
Method: Least Squares F-statistic: 60.17
Date: Thu, 16 Jan 2025 Prob (F-statistic): 4.13e-07
Time: 03:41:58 Log-Likelihood: -53.873
No. Observations: 15 AIC: 115.7
Df Residuals: 11 BIC: 118.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -265.3806 71.548 -3.709 0.003 -422.856 -107.905
C(dose)[T.1] -67.8966 88.940 -0.763 0.461 -263.653 127.860
expression 92.4921 19.855 4.658 0.001 48.792 136.192
expression:C(dose)[T.1] 24.2010 24.106 1.004 0.337 -28.857 77.259
Omnibus: 2.455 Durbin-Watson: 1.325
Prob(Omnibus): 0.293 Jarque-Bera (JB): 1.079
Skew: 0.166 Prob(JB): 0.583
Kurtosis: 1.729 Cond. No. 194.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.937
Model: OLS Adj. R-squared: 0.927
Method: Least Squares F-statistic: 89.69
Date: Thu, 16 Jan 2025 Prob (F-statistic): 6.08e-08
Time: 03:41:58 Log-Likelihood: -54.530
No. Observations: 15 AIC: 115.1
Df Residuals: 12 BIC: 117.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -324.4545 40.715 -7.969 0.000 -413.164 -235.745
C(dose)[T.1] 21.1864 6.048 3.503 0.004 8.010 34.363
expression 108.9095 11.264 9.669 0.000 84.368 133.451
Omnibus: 0.573 Durbin-Watson: 1.245
Prob(Omnibus): 0.751 Jarque-Bera (JB): 0.568
Skew: 0.003 Prob(JB): 0.753
Kurtosis: 2.047 Cond. No. 62.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.00629
Time: 03:41:58 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.873
Model: OLS Adj. R-squared: 0.863
Method: Least Squares F-statistic: 89.49
Date: Thu, 16 Jan 2025 Prob (F-statistic): 3.41e-07
Time: 03:41:58 Log-Likelihood: -59.814
No. Observations: 15 AIC: 123.6
Df Residuals: 13 BIC: 125.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -383.7619 50.597 -7.585 0.000 -493.070 -274.454
expression 127.8115 13.511 9.460 0.000 98.624 156.999
Omnibus: 1.238 Durbin-Watson: 2.315
Prob(Omnibus): 0.538 Jarque-Bera (JB): 0.881
Skew: -0.554 Prob(JB): 0.644
Kurtosis: 2.574 Cond. No. 56.1