AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.836 0.371 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.10e-05
Time: 06:24:21 Log-Likelihood: -100.20
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.0484 53.373 2.193 0.041 5.338 228.759
C(dose)[T.1] 0.8840 65.013 0.014 0.989 -135.191 136.959
expression -15.8402 13.369 -1.185 0.251 -43.821 12.141
expression:C(dose)[T.1] 13.2220 16.242 0.814 0.426 -20.773 47.217
Omnibus: 0.250 Durbin-Watson: 2.047
Prob(Omnibus): 0.883 Jarque-Bera (JB): 0.439
Skew: 0.025 Prob(JB): 0.803
Kurtosis: 2.325 Cond. No. 89.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.69
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.88e-05
Time: 06:24:21 Log-Likelihood: -100.59
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 81.5116 30.449 2.677 0.014 17.997 145.027
C(dose)[T.1] 53.3371 8.592 6.208 0.000 35.414 71.260
expression -6.8824 7.528 -0.914 0.371 -22.585 8.820
Omnibus: 0.344 Durbin-Watson: 1.978
Prob(Omnibus): 0.842 Jarque-Bera (JB): 0.475
Skew: 0.230 Prob(JB): 0.789
Kurtosis: 2.468 Cond. No. 30.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:24:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.014
Model: OLS Adj. R-squared: -0.033
Method: Least Squares F-statistic: 0.2999
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.590
Time: 06:24:21 Log-Likelihood: -112.94
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.0200 50.371 2.125 0.046 2.269 211.771
expression -6.8822 12.568 -0.548 0.590 -33.019 19.254
Omnibus: 2.313 Durbin-Watson: 2.557
Prob(Omnibus): 0.315 Jarque-Bera (JB): 1.482
Skew: 0.373 Prob(JB): 0.477
Kurtosis: 2.005 Cond. No. 29.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.026 0.874 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.538
Model: OLS Adj. R-squared: 0.412
Method: Least Squares F-statistic: 4.269
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0315
Time: 06:24:21 Log-Likelihood: -69.509
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 110.8069 67.050 1.653 0.127 -36.769 258.383
C(dose)[T.1] -100.0951 105.947 -0.945 0.365 -333.284 133.093
expression -9.2569 14.115 -0.656 0.525 -40.323 21.810
expression:C(dose)[T.1] 37.0993 25.631 1.447 0.176 -19.314 93.513
Omnibus: 1.405 Durbin-Watson: 1.266
Prob(Omnibus): 0.495 Jarque-Bera (JB): 0.998
Skew: -0.594 Prob(JB): 0.607
Kurtosis: 2.567 Cond. No. 77.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.909
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 06:24:21 Log-Likelihood: -70.817
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.0846 58.806 0.988 0.343 -70.043 186.212
C(dose)[T.1] 50.9552 19.106 2.667 0.021 9.327 92.584
expression 1.9940 12.308 0.162 0.874 -24.822 28.810
Omnibus: 2.409 Durbin-Watson: 0.822
Prob(Omnibus): 0.300 Jarque-Bera (JB): 1.717
Skew: -0.796 Prob(JB): 0.424
Kurtosis: 2.539 Cond. No. 34.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:24:21 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.124
Model: OLS Adj. R-squared: 0.057
Method: Least Squares F-statistic: 1.840
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.198
Time: 06:24:22 Log-Likelihood: -74.307
No. Observations: 15 AIC: 152.6
Df Residuals: 13 BIC: 154.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 163.8820 52.636 3.113 0.008 50.169 277.595
expression -16.6559 12.280 -1.356 0.198 -43.186 9.874
Omnibus: 1.106 Durbin-Watson: 1.479
Prob(Omnibus): 0.575 Jarque-Bera (JB): 0.747
Skew: -0.087 Prob(JB): 0.688
Kurtosis: 1.921 Cond. No. 25.0