AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.628 0.437 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.29
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000107
Time: 21:54:49 Log-Likelihood: -100.70
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -157.4447 326.144 -0.483 0.635 -840.073 525.184
C(dose)[T.1] 91.9495 521.516 0.176 0.862 -999.596 1183.495
expression 22.0035 33.900 0.649 0.524 -48.950 92.957
expression:C(dose)[T.1] -4.0071 54.222 -0.074 0.942 -117.495 109.481
Omnibus: 0.259 Durbin-Watson: 2.141
Prob(Omnibus): 0.878 Jarque-Bera (JB): 0.446
Skew: 0.022 Prob(JB): 0.800
Kurtosis: 2.320 Cond. No. 1.42e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 19.39
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.08e-05
Time: 21:54:49 Log-Likelihood: -100.71
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -142.3781 248.161 -0.574 0.573 -660.032 375.276
C(dose)[T.1] 53.4141 8.636 6.185 0.000 35.400 71.428
expression 20.4372 25.791 0.792 0.437 -33.363 74.237
Omnibus: 0.232 Durbin-Watson: 2.138
Prob(Omnibus): 0.890 Jarque-Bera (JB): 0.428
Skew: 0.011 Prob(JB): 0.807
Kurtosis: 2.332 Cond. No. 560.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:54:49 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.009
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.1884
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.669
Time: 21:54:49 Log-Likelihood: -113.00
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -99.5809 413.165 -0.241 0.812 -958.805 759.643
expression 18.6434 42.954 0.434 0.669 -70.685 107.972
Omnibus: 4.419 Durbin-Watson: 2.606
Prob(Omnibus): 0.110 Jarque-Bera (JB): 1.778
Skew: 0.294 Prob(JB): 0.411
Kurtosis: 1.771 Cond. No. 559.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.381 0.263 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.543
Model: OLS Adj. R-squared: 0.419
Method: Least Squares F-statistic: 4.359
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0297
Time: 21:54:49 Log-Likelihood: -69.425
No. Observations: 15 AIC: 146.9
Df Residuals: 11 BIC: 149.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -313.8916 265.736 -1.181 0.262 -898.773 270.990
C(dose)[T.1] 738.5268 724.709 1.019 0.330 -856.547 2333.601
expression 43.3127 30.158 1.436 0.179 -23.065 109.691
expression:C(dose)[T.1] -78.4492 82.607 -0.950 0.363 -260.265 103.367
Omnibus: 3.437 Durbin-Watson: 0.913
Prob(Omnibus): 0.179 Jarque-Bera (JB): 1.627
Skew: -0.789 Prob(JB): 0.443
Kurtosis: 3.333 Cond. No. 1.01e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.506
Model: OLS Adj. R-squared: 0.423
Method: Least Squares F-statistic: 6.137
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0146
Time: 21:54:49 Log-Likelihood: -70.016
No. Observations: 15 AIC: 146.0
Df Residuals: 12 BIC: 148.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -221.8361 246.412 -0.900 0.386 -758.722 315.050
C(dose)[T.1] 50.4384 14.943 3.375 0.006 17.881 82.996
expression 32.8565 27.962 1.175 0.263 -28.067 93.780
Omnibus: 2.150 Durbin-Watson: 0.824
Prob(Omnibus): 0.341 Jarque-Bera (JB): 1.481
Skew: -0.743 Prob(JB): 0.477
Kurtosis: 2.601 Cond. No. 295.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:54:49 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.036
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.4896
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.496
Time: 21:54:49 Log-Likelihood: -75.023
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -136.2987 328.797 -0.415 0.685 -846.622 574.024
expression 26.1808 37.415 0.700 0.496 -54.650 107.012
Omnibus: 3.102 Durbin-Watson: 1.723
Prob(Omnibus): 0.212 Jarque-Bera (JB): 1.347
Skew: 0.337 Prob(JB): 0.510
Kurtosis: 1.696 Cond. No. 293.