AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.187 0.670 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.49
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.98e-05
Time: 04:19:04 Log-Likelihood: -99.985
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.9024 82.179 1.045 0.309 -86.101 257.905
C(dose)[T.1] -121.1728 136.651 -0.887 0.386 -407.187 164.842
expression -4.3605 11.277 -0.387 0.703 -27.963 19.242
expression:C(dose)[T.1] 25.2777 19.546 1.293 0.211 -15.632 66.188
Omnibus: 0.332 Durbin-Watson: 1.832
Prob(Omnibus): 0.847 Jarque-Bera (JB): 0.497
Skew: -0.163 Prob(JB): 0.780
Kurtosis: 2.358 Cond. No. 277.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.58e-05
Time: 04:19:04 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 24.7474 68.331 0.362 0.721 -117.789 167.284
C(dose)[T.1] 55.1239 9.656 5.709 0.000 34.982 75.266
expression 4.0532 9.364 0.433 0.670 -15.480 23.587
Omnibus: 0.176 Durbin-Watson: 1.801
Prob(Omnibus): 0.916 Jarque-Bera (JB): 0.386
Skew: 0.069 Prob(JB): 0.825
Kurtosis: 2.381 Cond. No. 114.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:19:04 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.086
Model: OLS Adj. R-squared: 0.042
Method: Least Squares F-statistic: 1.970
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.175
Time: 04:19:04 Log-Likelihood: -112.07
No. Observations: 23 AIC: 228.1
Df Residuals: 21 BIC: 230.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 212.4111 94.799 2.241 0.036 15.266 409.556
expression -18.8013 13.396 -1.403 0.175 -46.661 9.058
Omnibus: 1.056 Durbin-Watson: 2.558
Prob(Omnibus): 0.590 Jarque-Bera (JB): 0.993
Skew: 0.430 Prob(JB): 0.609
Kurtosis: 2.457 Cond. No. 99.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.128 0.727 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.308
Method: Least Squares F-statistic: 3.073
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0728
Time: 04:19:04 Log-Likelihood: -70.735
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.2135 112.143 0.225 0.826 -221.612 272.039
C(dose)[T.1] 101.8158 326.254 0.312 0.761 -616.264 819.895
expression 6.9421 18.337 0.379 0.712 -33.417 47.301
expression:C(dose)[T.1] -8.6078 52.335 -0.164 0.872 -123.797 106.582
Omnibus: 2.671 Durbin-Watson: 0.668
Prob(Omnibus): 0.263 Jarque-Bera (JB): 1.895
Skew: -0.841 Prob(JB): 0.388
Kurtosis: 2.553 Cond. No. 299.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.001
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0263
Time: 04:19:04 Log-Likelihood: -70.754
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 31.6393 100.766 0.314 0.759 -187.911 251.190
C(dose)[T.1] 48.2250 15.891 3.035 0.010 13.602 82.848
expression 5.8854 16.463 0.357 0.727 -29.985 41.756
Omnibus: 2.854 Durbin-Watson: 0.689
Prob(Omnibus): 0.240 Jarque-Bera (JB): 1.939
Skew: -0.864 Prob(JB): 0.379
Kurtosis: 2.653 Cond. No. 82.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:19:04 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.036
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.4850
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.498
Time: 04:19:04 Log-Likelihood: -75.025
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 4.6469 128.208 0.036 0.972 -272.330 281.623
expression 14.4300 20.719 0.696 0.498 -30.331 59.191
Omnibus: 0.692 Durbin-Watson: 1.593
Prob(Omnibus): 0.708 Jarque-Bera (JB): 0.611
Skew: 0.027 Prob(JB): 0.737
Kurtosis: 2.013 Cond. No. 81.6