AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.348 0.259 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.687
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 13.89
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.97e-05
Time: 03:47:52 Log-Likelihood: -99.756
No. Observations: 23 AIC: 207.5
Df Residuals: 19 BIC: 212.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -40.8095 66.177 -0.617 0.545 -179.319 97.700
C(dose)[T.1] 125.3409 83.400 1.503 0.149 -49.218 299.900
expression 17.9320 12.440 1.442 0.166 -8.105 43.968
expression:C(dose)[T.1] -14.3157 14.745 -0.971 0.344 -45.178 16.546
Omnibus: 0.574 Durbin-Watson: 1.612
Prob(Omnibus): 0.750 Jarque-Bera (JB): 0.603
Skew: -0.320 Prob(JB): 0.740
Kurtosis: 2.532 Cond. No. 170.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.638
Method: Least Squares F-statistic: 20.41
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.48e-05
Time: 03:47:52 Log-Likelihood: -100.31
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.1796 35.824 0.368 0.717 -61.548 87.907
C(dose)[T.1] 45.0881 11.070 4.073 0.001 21.997 68.179
expression 7.7430 6.669 1.161 0.259 -6.169 21.655
Omnibus: 0.658 Durbin-Watson: 1.709
Prob(Omnibus): 0.720 Jarque-Bera (JB): 0.446
Skew: -0.324 Prob(JB): 0.800
Kurtosis: 2.788 Cond. No. 52.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:47:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.398
Model: OLS Adj. R-squared: 0.370
Method: Least Squares F-statistic: 13.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00124
Time: 03:47:52 Log-Likelihood: -107.26
No. Observations: 23 AIC: 218.5
Df Residuals: 21 BIC: 220.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -66.5313 39.608 -1.680 0.108 -148.901 15.838
expression 25.1792 6.751 3.730 0.001 11.140 39.218
Omnibus: 0.310 Durbin-Watson: 1.602
Prob(Omnibus): 0.856 Jarque-Bera (JB): 0.451
Skew: 0.217 Prob(JB): 0.798
Kurtosis: 2.470 Cond. No. 42.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.151 0.101 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.636
Model: OLS Adj. R-squared: 0.537
Method: Least Squares F-statistic: 6.409
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00903
Time: 03:47:52 Log-Likelihood: -67.718
No. Observations: 15 AIC: 143.4
Df Residuals: 11 BIC: 146.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.0067 102.200 0.705 0.496 -152.933 296.946
C(dose)[T.1] -141.0284 128.905 -1.094 0.297 -424.746 142.689
expression -0.7568 16.817 -0.045 0.965 -37.770 36.257
expression:C(dose)[T.1] 31.4026 21.183 1.482 0.166 -15.220 78.026
Omnibus: 0.416 Durbin-Watson: 1.204
Prob(Omnibus): 0.812 Jarque-Bera (JB): 0.317
Skew: -0.301 Prob(JB): 0.853
Kurtosis: 2.619 Cond. No. 170.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.563
Model: OLS Adj. R-squared: 0.491
Method: Least Squares F-statistic: 7.743
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00693
Time: 03:47:52 Log-Likelihood: -69.085
No. Observations: 15 AIC: 144.2
Df Residuals: 12 BIC: 146.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -47.7226 65.676 -0.727 0.481 -190.818 95.373
C(dose)[T.1] 49.0387 14.008 3.501 0.004 18.518 79.560
expression 19.0348 10.724 1.775 0.101 -4.331 42.400
Omnibus: 0.982 Durbin-Watson: 1.009
Prob(Omnibus): 0.612 Jarque-Bera (JB): 0.842
Skew: -0.354 Prob(JB): 0.656
Kurtosis: 2.080 Cond. No. 59.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:47:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.118
Model: OLS Adj. R-squared: 0.050
Method: Least Squares F-statistic: 1.731
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.211
Time: 03:47:52 Log-Likelihood: -74.362
No. Observations: 15 AIC: 152.7
Df Residuals: 13 BIC: 154.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.0099 89.190 -0.258 0.800 -215.692 169.672
expression 19.2728 14.648 1.316 0.211 -12.372 50.918
Omnibus: 0.100 Durbin-Watson: 1.529
Prob(Omnibus): 0.951 Jarque-Bera (JB): 0.292
Skew: -0.137 Prob(JB): 0.864
Kurtosis: 2.374 Cond. No. 58.4