AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.394 0.537 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.51
Date: Thu, 03 Apr 2025 Prob (F-statistic): 9.57e-05
Time: 22:53:03 Log-Likelihood: -100.57
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.5995 146.666 0.154 0.879 -284.375 329.574
C(dose)[T.1] -168.6926 320.899 -0.526 0.605 -840.342 502.957
expression 3.2071 14.868 0.216 0.832 -27.912 34.326
expression:C(dose)[T.1] 20.6875 30.720 0.673 0.509 -43.610 84.985
Omnibus: 0.215 Durbin-Watson: 2.035
Prob(Omnibus): 0.898 Jarque-Bera (JB): 0.408
Skew: 0.136 Prob(JB): 0.816
Kurtosis: 2.407 Cond. No. 890.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.06
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.33e-05
Time: 22:53:03 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.1621 126.611 -0.199 0.844 -289.268 238.944
C(dose)[T.1] 47.2256 13.048 3.619 0.002 20.008 74.444
expression 8.0530 12.832 0.628 0.537 -18.713 34.819
Omnibus: 0.276 Durbin-Watson: 1.895
Prob(Omnibus): 0.871 Jarque-Bera (JB): 0.408
Skew: 0.214 Prob(JB): 0.816
Kurtosis: 2.507 Cond. No. 303.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:53:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.430
Model: OLS Adj. R-squared: 0.403
Method: Least Squares F-statistic: 15.87
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000676
Time: 22:53:03 Log-Likelihood: -106.63
No. Observations: 23 AIC: 217.3
Df Residuals: 21 BIC: 219.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -356.7682 109.706 -3.252 0.004 -584.915 -128.621
expression 42.7134 10.722 3.984 0.001 20.415 65.012
Omnibus: 0.750 Durbin-Watson: 2.262
Prob(Omnibus): 0.687 Jarque-Bera (JB): 0.788
Skew: 0.300 Prob(JB): 0.674
Kurtosis: 2.320 Cond. No. 208.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.066 0.801 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.497
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 3.629
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0486
Time: 22:53:03 Log-Likelihood: -70.140
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 198.5280 169.787 1.169 0.267 -175.171 572.227
C(dose)[T.1] -264.2583 316.850 -0.834 0.422 -961.642 433.125
expression -17.1612 22.175 -0.774 0.455 -65.967 31.645
expression:C(dose)[T.1] 39.4553 39.493 0.999 0.339 -47.468 126.379
Omnibus: 1.251 Durbin-Watson: 0.959
Prob(Omnibus): 0.535 Jarque-Bera (JB): 1.048
Skew: -0.491 Prob(JB): 0.592
Kurtosis: 2.156 Cond. No. 404.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.945
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0271
Time: 22:53:03 Log-Likelihood: -70.792
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 103.5025 140.633 0.736 0.476 -202.910 409.915
C(dose)[T.1] 51.7473 18.564 2.788 0.016 11.300 92.194
expression -4.7221 18.348 -0.257 0.801 -44.699 35.254
Omnibus: 3.559 Durbin-Watson: 0.765
Prob(Omnibus): 0.169 Jarque-Bera (JB): 2.266
Skew: -0.949 Prob(JB): 0.322
Kurtosis: 2.844 Cond. No. 146.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:53:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.097
Model: OLS Adj. R-squared: 0.027
Method: Least Squares F-statistic: 1.394
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.259
Time: 22:53:04 Log-Likelihood: -74.536
No. Observations: 15 AIC: 153.1
Df Residuals: 13 BIC: 154.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -85.3755 151.972 -0.562 0.584 -413.691 242.940
expression 22.5852 19.132 1.181 0.259 -18.746 63.917
Omnibus: 0.196 Durbin-Watson: 1.288
Prob(Omnibus): 0.907 Jarque-Bera (JB): 0.393
Skew: -0.096 Prob(JB): 0.822
Kurtosis: 2.231 Cond. No. 127.