AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.326 | 0.574 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.642 |
Method: | Least Squares | F-statistic: | 14.16 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.39e-05 |
Time: | 04:19:50 | Log-Likelihood: | -99.603 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 19 | BIC: | 211.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 76.5961 | 157.243 | 0.487 | 0.632 | -252.518 405.710 |
C(dose)[T.1] | 913.7625 | 574.744 | 1.590 | 0.128 | -289.190 2116.715 |
expression | -2.4593 | 17.261 | -0.142 | 0.888 | -38.587 33.669 |
expression:C(dose)[T.1] | -91.0015 | 61.014 | -1.491 | 0.152 | -218.705 36.702 |
Omnibus: | 1.654 | Durbin-Watson: | 1.691 |
Prob(Omnibus): | 0.437 | Jarque-Bera (JB): | 1.243 |
Skew: | 0.351 | Prob(JB): | 0.537 |
Kurtosis: | 2.104 | Cond. No. | 1.46e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.96 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.41e-05 |
Time: | 04:19:50 | Log-Likelihood: | -100.88 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 142.8989 | 155.378 | 0.920 | 0.369 | -181.213 467.011 |
C(dose)[T.1] | 56.6730 | 10.478 | 5.409 | 0.000 | 34.817 78.529 |
expression | -9.7426 | 17.055 | -0.571 | 0.574 | -45.319 25.834 |
Omnibus: | 0.668 | Durbin-Watson: | 1.991 |
Prob(Omnibus): | 0.716 | Jarque-Bera (JB): | 0.657 |
Skew: | 0.066 | Prob(JB): | 0.720 |
Kurtosis: | 2.183 | Cond. No. | 336. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:19:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.150 |
Model: | OLS | Adj. R-squared: | 0.109 |
Method: | Least Squares | F-statistic: | 3.693 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0683 |
Time: | 04:19:50 | Log-Likelihood: | -111.24 |
No. Observations: | 23 | AIC: | 226.5 |
Df Residuals: | 21 | BIC: | 228.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -306.4925 | 201.090 | -1.524 | 0.142 | -724.681 111.696 |
expression | 41.6750 | 21.687 | 1.922 | 0.068 | -3.426 86.776 |
Omnibus: | 2.008 | Durbin-Watson: | 2.173 |
Prob(Omnibus): | 0.366 | Jarque-Bera (JB): | 1.097 |
Skew: | 0.114 | Prob(JB): | 0.578 |
Kurtosis: | 1.954 | Cond. No. | 283. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
12.934 | 0.004 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.735 |
Model: | OLS | Adj. R-squared: | 0.663 |
Method: | Least Squares | F-statistic: | 10.17 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00167 |
Time: | 04:19:50 | Log-Likelihood: | -65.337 |
No. Observations: | 15 | AIC: | 138.7 |
Df Residuals: | 11 | BIC: | 141.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -497.3708 | 279.089 | -1.782 | 0.102 | -1111.641 116.899 |
C(dose)[T.1] | 65.6508 | 341.391 | 0.192 | 0.851 | -685.746 817.048 |
expression | 63.6520 | 31.439 | 2.025 | 0.068 | -5.545 132.849 |
expression:C(dose)[T.1] | -4.8075 | 37.854 | -0.127 | 0.901 | -88.122 78.508 |
Omnibus: | 0.622 | Durbin-Watson: | 1.613 |
Prob(Omnibus): | 0.733 | Jarque-Bera (JB): | 0.473 |
Skew: | -0.383 | Prob(JB): | 0.789 |
Kurtosis: | 2.587 | Cond. No. | 803. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.735 |
Model: | OLS | Adj. R-squared: | 0.690 |
Method: | Least Squares | F-statistic: | 16.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000349 |
Time: | 04:19:50 | Log-Likelihood: | -65.348 |
No. Observations: | 15 | AIC: | 136.7 |
Df Residuals: | 12 | BIC: | 138.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -467.9454 | 149.079 | -3.139 | 0.009 | -792.761 -143.129 |
C(dose)[T.1] | 22.3288 | 13.230 | 1.688 | 0.117 | -6.498 51.155 |
expression | 60.3358 | 16.777 | 3.596 | 0.004 | 23.782 96.890 |
Omnibus: | 0.710 | Durbin-Watson: | 1.579 |
Prob(Omnibus): | 0.701 | Jarque-Bera (JB): | 0.504 |
Skew: | -0.406 | Prob(JB): | 0.777 |
Kurtosis: | 2.616 | Cond. No. | 253. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:19:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.672 |
Model: | OLS | Adj. R-squared: | 0.646 |
Method: | Least Squares | F-statistic: | 26.60 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000184 |
Time: | 04:19:50 | Log-Likelihood: | -66.945 |
No. Observations: | 15 | AIC: | 137.9 |
Df Residuals: | 13 | BIC: | 139.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -601.7020 | 134.945 | -4.459 | 0.001 | -893.234 -310.170 |
expression | 76.3242 | 14.798 | 5.158 | 0.000 | 44.355 108.293 |
Omnibus: | 0.617 | Durbin-Watson: | 1.935 |
Prob(Omnibus): | 0.735 | Jarque-Bera (JB): | 0.589 |
Skew: | 0.070 | Prob(JB): | 0.745 |
Kurtosis: | 2.040 | Cond. No. | 214. |