AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.016 | 0.900 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 12.49 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.67e-05 |
Time: | 05:08:10 | Log-Likelihood: | -100.58 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 23.0637 | 58.561 | 0.394 | 0.698 | -99.505 145.632 |
C(dose)[T.1] | 123.9204 | 80.086 | 1.547 | 0.138 | -43.701 291.541 |
expression | 5.0327 | 9.411 | 0.535 | 0.599 | -14.666 24.731 |
expression:C(dose)[T.1] | -12.0251 | 13.458 | -0.894 | 0.383 | -40.193 16.143 |
Omnibus: | 0.291 | Durbin-Watson: | 2.079 |
Prob(Omnibus): | 0.864 | Jarque-Bera (JB): | 0.466 |
Skew: | -0.041 | Prob(JB): | 0.792 |
Kurtosis: | 2.308 | Cond. No. | 144. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.81e-05 |
Time: | 05:08:10 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.4578 | 41.863 | 1.420 | 0.171 | -27.867 146.783 |
C(dose)[T.1] | 52.8720 | 9.504 | 5.563 | 0.000 | 33.048 72.696 |
expression | -0.8483 | 6.693 | -0.127 | 0.900 | -14.810 13.114 |
Omnibus: | 0.260 | Durbin-Watson: | 1.850 |
Prob(Omnibus): | 0.878 | Jarque-Bera (JB): | 0.447 |
Skew: | 0.050 | Prob(JB): | 0.800 |
Kurtosis: | 2.325 | Cond. No. | 59.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:08:10 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.107 |
Model: | OLS | Adj. R-squared: | 0.064 |
Method: | Least Squares | F-statistic: | 2.507 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.128 |
Time: | 05:08:10 | Log-Likelihood: | -111.81 |
No. Observations: | 23 | AIC: | 227.6 |
Df Residuals: | 21 | BIC: | 229.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 169.9642 | 57.400 | 2.961 | 0.007 | 50.594 289.335 |
expression | -15.2283 | 9.617 | -1.583 | 0.128 | -35.228 4.772 |
Omnibus: | 0.945 | Durbin-Watson: | 2.093 |
Prob(Omnibus): | 0.623 | Jarque-Bera (JB): | 0.757 |
Skew: | 0.002 | Prob(JB): | 0.685 |
Kurtosis: | 2.111 | Cond. No. | 51.6 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.979 | 0.342 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.508 |
Model: | OLS | Adj. R-squared: | 0.374 |
Method: | Least Squares | F-statistic: | 3.792 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0434 |
Time: | 05:08:10 | Log-Likelihood: | -69.975 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 212.6920 | 126.714 | 1.679 | 0.121 | -66.203 491.587 |
C(dose)[T.1] | -80.4613 | 207.478 | -0.388 | 0.706 | -537.118 376.195 |
expression | -24.1182 | 20.954 | -1.151 | 0.274 | -70.238 22.001 |
expression:C(dose)[T.1] | 21.5738 | 33.965 | 0.635 | 0.538 | -53.182 96.330 |
Omnibus: | 3.659 | Durbin-Watson: | 1.202 |
Prob(Omnibus): | 0.160 | Jarque-Bera (JB): | 2.238 |
Skew: | -0.946 | Prob(JB): | 0.327 |
Kurtosis: | 2.933 | Cond. No. | 212. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.490 |
Model: | OLS | Adj. R-squared: | 0.405 |
Method: | Least Squares | F-statistic: | 5.773 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0175 |
Time: | 05:08:10 | Log-Likelihood: | -70.245 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 12 | BIC: | 148.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 163.2369 | 97.454 | 1.675 | 0.120 | -49.098 375.571 |
C(dose)[T.1] | 50.9499 | 15.238 | 3.344 | 0.006 | 17.750 84.150 |
expression | -15.9072 | 16.076 | -0.989 | 0.342 | -50.934 19.120 |
Omnibus: | 5.209 | Durbin-Watson: | 1.002 |
Prob(Omnibus): | 0.074 | Jarque-Bera (JB): | 3.058 |
Skew: | -1.098 | Prob(JB): | 0.217 |
Kurtosis: | 3.264 | Cond. No. | 81.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:08:10 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.060 |
Method: | Least Squares | F-statistic: | 0.2051 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.658 |
Time: | 05:08:10 | Log-Likelihood: | -75.183 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 152.3913 | 130.061 | 1.172 | 0.262 | -128.588 433.370 |
expression | -9.6559 | 21.321 | -0.453 | 0.658 | -55.717 36.405 |
Omnibus: | 1.053 | Durbin-Watson: | 1.843 |
Prob(Omnibus): | 0.591 | Jarque-Bera (JB): | 0.735 |
Skew: | 0.100 | Prob(JB): | 0.692 |
Kurtosis: | 1.934 | Cond. No. | 80.8 |