AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.345 0.032 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.729
Model: OLS Adj. R-squared: 0.686
Method: Least Squares F-statistic: 17.03
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.29e-05
Time: 04:26:02 Log-Likelihood: -98.096
No. Observations: 23 AIC: 204.2
Df Residuals: 19 BIC: 208.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.6208 44.138 -0.377 0.711 -109.002 75.760
C(dose)[T.1] 86.2606 49.632 1.738 0.098 -17.621 190.142
expression 17.7230 10.959 1.617 0.122 -5.215 40.661
expression:C(dose)[T.1] -7.8763 12.356 -0.637 0.531 -33.737 17.985
Omnibus: 3.204 Durbin-Watson: 2.156
Prob(Omnibus): 0.202 Jarque-Bera (JB): 1.994
Skew: 0.716 Prob(JB): 0.369
Kurtosis: 3.179 Cond. No. 78.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.723
Model: OLS Adj. R-squared: 0.695
Method: Least Squares F-statistic: 26.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.65e-06
Time: 04:26:02 Log-Likelihood: -98.339
No. Observations: 23 AIC: 202.7
Df Residuals: 20 BIC: 206.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 8.1420 20.641 0.394 0.697 -34.915 51.199
C(dose)[T.1] 55.0302 7.825 7.033 0.000 38.708 71.352
expression 11.5268 4.986 2.312 0.032 1.127 21.927
Omnibus: 2.353 Durbin-Watson: 2.251
Prob(Omnibus): 0.308 Jarque-Bera (JB): 1.690
Skew: 0.659 Prob(JB): 0.430
Kurtosis: 2.837 Cond. No. 22.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:26:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.038
Model: OLS Adj. R-squared: -0.008
Method: Least Squares F-statistic: 0.8341
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.371
Time: 04:26:02 Log-Likelihood: -112.66
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.3451 36.145 1.310 0.204 -27.823 122.513
expression 8.2452 9.028 0.913 0.371 -10.529 27.020
Omnibus: 3.482 Durbin-Watson: 2.685
Prob(Omnibus): 0.175 Jarque-Bera (JB): 1.685
Skew: 0.335 Prob(JB): 0.431
Kurtosis: 1.856 Cond. No. 21.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.008 0.930 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.355
Method: Least Squares F-statistic: 3.564
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0508
Time: 04:26:02 Log-Likelihood: -70.207
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.1132 69.444 1.557 0.148 -44.731 260.958
C(dose)[T.1] -67.8432 120.773 -0.562 0.586 -333.663 197.977
expression -8.6934 14.633 -0.594 0.564 -40.901 23.514
expression:C(dose)[T.1] 26.7746 27.480 0.974 0.351 -33.708 87.257
Omnibus: 5.929 Durbin-Watson: 0.833
Prob(Omnibus): 0.052 Jarque-Bera (JB): 3.296
Skew: -1.112 Prob(JB): 0.192
Kurtosis: 3.571 Cond. No. 87.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.892
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0279
Time: 04:26:02 Log-Likelihood: -70.828
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.5818 58.973 1.231 0.242 -55.910 201.073
C(dose)[T.1] 48.6931 16.718 2.913 0.013 12.268 85.118
expression -1.1011 12.360 -0.089 0.930 -28.031 25.828
Omnibus: 2.551 Durbin-Watson: 0.826
Prob(Omnibus): 0.279 Jarque-Bera (JB): 1.784
Skew: -0.818 Prob(JB): 0.410
Kurtosis: 2.581 Cond. No. 35.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:26:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.060
Model: OLS Adj. R-squared: -0.013
Method: Least Squares F-statistic: 0.8254
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.380
Time: 04:26:02 Log-Likelihood: -74.838
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 152.5173 65.522 2.328 0.037 10.967 294.068
expression -13.2660 14.602 -0.909 0.380 -44.811 18.279
Omnibus: 1.196 Durbin-Watson: 1.647
Prob(Omnibus): 0.550 Jarque-Bera (JB): 0.873
Skew: 0.289 Prob(JB): 0.646
Kurtosis: 1.969 Cond. No. 31.3