AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.536 0.473 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 13.14
Date: Wed, 29 Jan 2025 Prob (F-statistic): 7.03e-05
Time: 01:05:07 Log-Likelihood: -100.18
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -333.9222 320.554 -1.042 0.311 -1004.848 337.004
C(dose)[T.1] 510.0715 467.815 1.090 0.289 -469.076 1489.219
expression 36.3137 29.986 1.211 0.241 -26.448 99.075
expression:C(dose)[T.1] -42.5728 43.188 -0.986 0.337 -132.966 47.820
Omnibus: 0.421 Durbin-Watson: 2.014
Prob(Omnibus): 0.810 Jarque-Bera (JB): 0.554
Skew: -0.151 Prob(JB): 0.758
Kurtosis: 2.302 Cond. No. 1.52e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.26
Date: Wed, 29 Jan 2025 Prob (F-statistic): 2.18e-05
Time: 01:05:07 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -114.5648 230.567 -0.497 0.625 -595.520 366.390
C(dose)[T.1] 49.0344 10.461 4.687 0.000 27.213 70.856
expression 15.7905 21.565 0.732 0.473 -29.193 60.774
Omnibus: 0.079 Durbin-Watson: 1.973
Prob(Omnibus): 0.961 Jarque-Bera (JB): 0.213
Skew: -0.119 Prob(JB): 0.899
Kurtosis: 2.593 Cond. No. 583.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Wed, 29 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 01:05:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.283
Model: OLS Adj. R-squared: 0.249
Method: Least Squares F-statistic: 8.278
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.00902
Time: 01:05:07 Log-Likelihood: -109.28
No. Observations: 23 AIC: 222.6
Df Residuals: 21 BIC: 224.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -705.3925 272.942 -2.584 0.017 -1273.006 -137.779
expression 72.5705 25.223 2.877 0.009 20.117 125.024
Omnibus: 1.584 Durbin-Watson: 2.234
Prob(Omnibus): 0.453 Jarque-Bera (JB): 0.770
Skew: 0.443 Prob(JB): 0.681
Kurtosis: 3.129 Cond. No. 487.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.810 0.049 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.608
Model: OLS Adj. R-squared: 0.501
Method: Least Squares F-statistic: 5.689
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.0133
Time: 01:05:07 Log-Likelihood: -68.275
No. Observations: 15 AIC: 144.5
Df Residuals: 11 BIC: 147.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -689.6866 422.633 -1.632 0.131 -1619.895 240.522
C(dose)[T.1] 164.1424 711.178 0.231 0.822 -1401.150 1729.435
expression 71.4829 39.891 1.792 0.101 -16.317 159.283
expression:C(dose)[T.1] -13.7755 65.058 -0.212 0.836 -156.967 129.415
Omnibus: 1.922 Durbin-Watson: 1.207
Prob(Omnibus): 0.382 Jarque-Bera (JB): 1.469
Skew: -0.622 Prob(JB): 0.480
Kurtosis: 2.103 Cond. No. 1.42e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.606
Model: OLS Adj. R-squared: 0.541
Method: Least Squares F-statistic: 9.248
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.00371
Time: 01:05:07 Log-Likelihood: -68.305
No. Observations: 15 AIC: 142.6
Df Residuals: 12 BIC: 144.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -634.8301 320.352 -1.982 0.071 -1332.818 63.158
C(dose)[T.1] 13.6264 20.974 0.650 0.528 -32.071 59.324
expression 66.3036 30.232 2.193 0.049 0.434 132.174
Omnibus: 1.798 Durbin-Watson: 1.174
Prob(Omnibus): 0.407 Jarque-Bera (JB): 1.386
Skew: -0.595 Prob(JB): 0.500
Kurtosis: 2.105 Cond. No. 531.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.00629
Time: 01:05:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.593
Model: OLS Adj. R-squared: 0.561
Method: Least Squares F-statistic: 18.91
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.000788
Time: 01:05:07 Log-Likelihood: -68.564
No. Observations: 15 AIC: 141.1
Df Residuals: 13 BIC: 142.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -792.7780 203.928 -3.888 0.002 -1233.338 -352.217
expression 81.4921 18.738 4.349 0.001 41.011 121.973
Omnibus: 1.075 Durbin-Watson: 1.427
Prob(Omnibus): 0.584 Jarque-Bera (JB): 0.857
Skew: -0.324 Prob(JB): 0.651
Kurtosis: 2.024 Cond. No. 345.