AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.674 0.210 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.719
Model: OLS Adj. R-squared: 0.675
Method: Least Squares F-statistic: 16.22
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.80e-05
Time: 22:57:35 Log-Likelihood: -98.499
No. Observations: 23 AIC: 205.0
Df Residuals: 19 BIC: 209.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.2481 74.235 0.825 0.420 -94.128 216.624
C(dose)[T.1] 262.0223 123.988 2.113 0.048 2.511 521.533
expression -1.0529 11.072 -0.095 0.925 -24.226 22.120
expression:C(dose)[T.1] -32.1746 18.861 -1.706 0.104 -71.652 7.303
Omnibus: 0.497 Durbin-Watson: 2.050
Prob(Omnibus): 0.780 Jarque-Bera (JB): 0.412
Skew: 0.292 Prob(JB): 0.814
Kurtosis: 2.704 Cond. No. 253.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.676
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 20.88
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.27e-05
Time: 22:57:35 Log-Likelihood: -100.14
No. Observations: 23 AIC: 206.3
Df Residuals: 20 BIC: 209.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.3723 62.997 2.149 0.044 3.962 266.782
C(dose)[T.1] 50.9850 8.618 5.916 0.000 33.008 68.962
expression -12.1392 9.382 -1.294 0.210 -31.709 7.431
Omnibus: 0.365 Durbin-Watson: 1.789
Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.496
Skew: 0.235 Prob(JB): 0.780
Kurtosis: 2.455 Cond. No. 101.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:57:35 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.109
Model: OLS Adj. R-squared: 0.067
Method: Least Squares F-statistic: 2.582
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.123
Time: 22:57:35 Log-Likelihood: -111.77
No. Observations: 23 AIC: 227.5
Df Residuals: 21 BIC: 229.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 236.9459 98.090 2.416 0.025 32.956 440.936
expression -23.8462 14.841 -1.607 0.123 -54.710 7.017
Omnibus: 2.051 Durbin-Watson: 2.625
Prob(Omnibus): 0.359 Jarque-Bera (JB): 1.078
Skew: 0.027 Prob(JB): 0.583
Kurtosis: 1.941 Cond. No. 97.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.004 0.948 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.482
Model: OLS Adj. R-squared: 0.340
Method: Least Squares F-statistic: 3.406
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0569
Time: 22:57:35 Log-Likelihood: -70.373
No. Observations: 15 AIC: 148.7
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -272.3089 529.981 -0.514 0.618 -1438.790 894.172
C(dose)[T.1] 590.3978 650.657 0.907 0.384 -841.689 2022.485
expression 41.5271 64.765 0.641 0.535 -101.021 184.075
expression:C(dose)[T.1] -65.9968 79.339 -0.832 0.423 -240.621 108.627
Omnibus: 4.977 Durbin-Watson: 0.829
Prob(Omnibus): 0.083 Jarque-Bera (JB): 2.946
Skew: -1.081 Prob(JB): 0.229
Kurtosis: 3.203 Cond. No. 976.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.889
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0280
Time: 22:57:35 Log-Likelihood: -70.830
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 87.4816 302.312 0.289 0.777 -571.200 746.164
C(dose)[T.1] 49.3241 15.854 3.111 0.009 14.782 83.867
expression -2.4511 36.926 -0.066 0.948 -82.905 78.003
Omnibus: 2.799 Durbin-Watson: 0.813
Prob(Omnibus): 0.247 Jarque-Bera (JB): 1.903
Skew: -0.855 Prob(JB): 0.386
Kurtosis: 2.649 Cond. No. 322.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:57:35 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.072
Method: Least Squares F-statistic: 0.05888
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.812
Time: 22:57:35 Log-Likelihood: -75.266
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -0.6187 388.682 -0.002 0.999 -840.315 839.077
expression 11.4858 47.333 0.243 0.812 -90.771 113.742
Omnibus: 0.492 Durbin-Watson: 1.617
Prob(Omnibus): 0.782 Jarque-Bera (JB): 0.547
Skew: 0.115 Prob(JB): 0.761
Kurtosis: 2.093 Cond. No. 319.