AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.003 0.955 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.72
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000142
Time: 22:55:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.4241 249.038 0.215 0.832 -467.818 574.666
C(dose)[T.1] 12.8648 480.329 0.027 0.979 -992.476 1018.205
expression 0.0986 31.293 0.003 0.998 -65.399 65.597
expression:C(dose)[T.1] 5.0072 59.686 0.084 0.934 -119.916 129.931
Omnibus: 0.301 Durbin-Watson: 1.900
Prob(Omnibus): 0.860 Jarque-Bera (JB): 0.472
Skew: 0.048 Prob(JB): 0.790
Kurtosis: 2.305 Cond. No. 1.03e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.83e-05
Time: 22:55:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.4734 206.756 0.205 0.839 -388.813 473.760
C(dose)[T.1] 53.1532 9.348 5.686 0.000 33.654 72.653
expression 1.4750 25.977 0.057 0.955 -52.713 55.663
Omnibus: 0.294 Durbin-Watson: 1.886
Prob(Omnibus): 0.863 Jarque-Bera (JB): 0.468
Skew: 0.055 Prob(JB): 0.791
Kurtosis: 2.310 Cond. No. 385.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:55:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.082
Model: OLS Adj. R-squared: 0.038
Method: Least Squares F-statistic: 1.873
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.186
Time: 22:55:51 Log-Likelihood: -112.12
No. Observations: 23 AIC: 228.2
Df Residuals: 21 BIC: 230.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -342.2559 308.412 -1.110 0.280 -983.634 299.123
expression 52.6462 38.468 1.369 0.186 -27.353 132.646
Omnibus: 1.866 Durbin-Watson: 2.311
Prob(Omnibus): 0.393 Jarque-Bera (JB): 1.088
Skew: 0.155 Prob(JB): 0.581
Kurtosis: 1.981 Cond. No. 363.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.070 0.796 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.330
Method: Least Squares F-statistic: 3.304
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0613
Time: 22:55:51 Log-Likelihood: -70.482
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 415.0683 820.678 0.506 0.623 -1391.233 2221.369
C(dose)[T.1] -632.1067 997.232 -0.634 0.539 -2827.000 1562.787
expression -45.0281 106.288 -0.424 0.680 -278.966 188.909
expression:C(dose)[T.1] 86.3482 127.347 0.678 0.512 -193.942 366.638
Omnibus: 2.076 Durbin-Watson: 1.059
Prob(Omnibus): 0.354 Jarque-Bera (JB): 1.430
Skew: -0.729 Prob(JB): 0.489
Kurtosis: 2.600 Cond. No. 1.45e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.948
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0271
Time: 22:55:52 Log-Likelihood: -70.789
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -49.3231 441.853 -0.112 0.913 -1012.038 913.392
C(dose)[T.1] 43.8344 25.648 1.709 0.113 -12.048 99.717
expression 15.1223 57.212 0.264 0.796 -109.532 139.776
Omnibus: 2.424 Durbin-Watson: 0.765
Prob(Omnibus): 0.298 Jarque-Bera (JB): 1.717
Skew: -0.798 Prob(JB): 0.424
Kurtosis: 2.552 Cond. No. 455.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:55:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.319
Model: OLS Adj. R-squared: 0.266
Method: Least Squares F-statistic: 6.077
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0284
Time: 22:55:52 Log-Likelihood: -72.423
No. Observations: 15 AIC: 148.8
Df Residuals: 13 BIC: 150.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -637.6496 296.769 -2.149 0.051 -1278.779 3.480
expression 92.4591 37.505 2.465 0.028 11.435 173.484
Omnibus: 0.602 Durbin-Watson: 0.960
Prob(Omnibus): 0.740 Jarque-Bera (JB): 0.593
Skew: -0.124 Prob(JB): 0.743
Kurtosis: 2.058 Cond. No. 284.