AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.003 | 0.955 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.72 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000142 |
Time: | 22:55:51 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 53.4241 | 249.038 | 0.215 | 0.832 | -467.818 574.666 |
C(dose)[T.1] | 12.8648 | 480.329 | 0.027 | 0.979 | -992.476 1018.205 |
expression | 0.0986 | 31.293 | 0.003 | 0.998 | -65.399 65.597 |
expression:C(dose)[T.1] | 5.0072 | 59.686 | 0.084 | 0.934 | -119.916 129.931 |
Omnibus: | 0.301 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.860 | Jarque-Bera (JB): | 0.472 |
Skew: | 0.048 | Prob(JB): | 0.790 |
Kurtosis: | 2.305 | Cond. No. | 1.03e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.83e-05 |
Time: | 22:55:51 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 42.4734 | 206.756 | 0.205 | 0.839 | -388.813 473.760 |
C(dose)[T.1] | 53.1532 | 9.348 | 5.686 | 0.000 | 33.654 72.653 |
expression | 1.4750 | 25.977 | 0.057 | 0.955 | -52.713 55.663 |
Omnibus: | 0.294 | Durbin-Watson: | 1.886 |
Prob(Omnibus): | 0.863 | Jarque-Bera (JB): | 0.468 |
Skew: | 0.055 | Prob(JB): | 0.791 |
Kurtosis: | 2.310 | Cond. No. | 385. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:55:51 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.082 |
Model: | OLS | Adj. R-squared: | 0.038 |
Method: | Least Squares | F-statistic: | 1.873 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.186 |
Time: | 22:55:51 | Log-Likelihood: | -112.12 |
No. Observations: | 23 | AIC: | 228.2 |
Df Residuals: | 21 | BIC: | 230.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -342.2559 | 308.412 | -1.110 | 0.280 | -983.634 299.123 |
expression | 52.6462 | 38.468 | 1.369 | 0.186 | -27.353 132.646 |
Omnibus: | 1.866 | Durbin-Watson: | 2.311 |
Prob(Omnibus): | 0.393 | Jarque-Bera (JB): | 1.088 |
Skew: | 0.155 | Prob(JB): | 0.581 |
Kurtosis: | 1.981 | Cond. No. | 363. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.070 | 0.796 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.474 |
Model: | OLS | Adj. R-squared: | 0.330 |
Method: | Least Squares | F-statistic: | 3.304 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0613 |
Time: | 22:55:51 | Log-Likelihood: | -70.482 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 11 | BIC: | 151.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 415.0683 | 820.678 | 0.506 | 0.623 | -1391.233 2221.369 |
C(dose)[T.1] | -632.1067 | 997.232 | -0.634 | 0.539 | -2827.000 1562.787 |
expression | -45.0281 | 106.288 | -0.424 | 0.680 | -278.966 188.909 |
expression:C(dose)[T.1] | 86.3482 | 127.347 | 0.678 | 0.512 | -193.942 366.638 |
Omnibus: | 2.076 | Durbin-Watson: | 1.059 |
Prob(Omnibus): | 0.354 | Jarque-Bera (JB): | 1.430 |
Skew: | -0.729 | Prob(JB): | 0.489 |
Kurtosis: | 2.600 | Cond. No. | 1.45e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.361 |
Method: | Least Squares | F-statistic: | 4.948 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0271 |
Time: | 22:55:52 | Log-Likelihood: | -70.789 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -49.3231 | 441.853 | -0.112 | 0.913 | -1012.038 913.392 |
C(dose)[T.1] | 43.8344 | 25.648 | 1.709 | 0.113 | -12.048 99.717 |
expression | 15.1223 | 57.212 | 0.264 | 0.796 | -109.532 139.776 |
Omnibus: | 2.424 | Durbin-Watson: | 0.765 |
Prob(Omnibus): | 0.298 | Jarque-Bera (JB): | 1.717 |
Skew: | -0.798 | Prob(JB): | 0.424 |
Kurtosis: | 2.552 | Cond. No. | 455. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:55:52 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.319 |
Model: | OLS | Adj. R-squared: | 0.266 |
Method: | Least Squares | F-statistic: | 6.077 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0284 |
Time: | 22:55:52 | Log-Likelihood: | -72.423 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 13 | BIC: | 150.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -637.6496 | 296.769 | -2.149 | 0.051 | -1278.779 3.480 |
expression | 92.4591 | 37.505 | 2.465 | 0.028 | 11.435 173.484 |
Omnibus: | 0.602 | Durbin-Watson: | 0.960 |
Prob(Omnibus): | 0.740 | Jarque-Bera (JB): | 0.593 |
Skew: | -0.124 | Prob(JB): | 0.743 |
Kurtosis: | 2.058 | Cond. No. | 284. |