AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.459 | 0.506 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.13 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000116 |
Time: | 22:59:13 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 205.6319 | 311.266 | 0.661 | 0.517 | -445.856 857.120 |
C(dose)[T.1] | 45.3973 | 446.894 | 0.102 | 0.920 | -889.962 980.757 |
expression | -14.9798 | 30.787 | -0.487 | 0.632 | -79.417 49.457 |
expression:C(dose)[T.1] | 1.0764 | 43.737 | 0.025 | 0.981 | -90.466 92.619 |
Omnibus: | 0.191 | Durbin-Watson: | 1.834 |
Prob(Omnibus): | 0.909 | Jarque-Bera (JB): | 0.400 |
Skew: | 0.000 | Prob(JB): | 0.819 |
Kurtosis: | 2.354 | Cond. No. | 1.34e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.15 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.26e-05 |
Time: | 22:59:13 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 200.2406 | 215.537 | 0.929 | 0.364 | -249.363 649.844 |
C(dose)[T.1] | 56.3933 | 9.773 | 5.770 | 0.000 | 36.007 76.780 |
expression | -14.4465 | 21.314 | -0.678 | 0.506 | -58.907 30.014 |
Omnibus: | 0.182 | Durbin-Watson: | 1.833 |
Prob(Omnibus): | 0.913 | Jarque-Bera (JB): | 0.393 |
Skew: | -0.003 | Prob(JB): | 0.822 |
Kurtosis: | 2.359 | Cond. No. | 514. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:59:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.086 |
Model: | OLS | Adj. R-squared: | 0.042 |
Method: | Least Squares | F-statistic: | 1.971 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.175 |
Time: | 22:59:13 | Log-Likelihood: | -112.07 |
No. Observations: | 23 | AIC: | 228.1 |
Df Residuals: | 21 | BIC: | 230.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -352.1094 | 307.646 | -1.145 | 0.265 | -991.894 287.675 |
expression | 42.2959 | 30.125 | 1.404 | 0.175 | -20.353 104.945 |
Omnibus: | 0.891 | Durbin-Watson: | 2.610 |
Prob(Omnibus): | 0.641 | Jarque-Bera (JB): | 0.864 |
Skew: | 0.291 | Prob(JB): | 0.649 |
Kurtosis: | 2.251 | Cond. No. | 460. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.031 | 0.862 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.531 |
Model: | OLS | Adj. R-squared: | 0.403 |
Method: | Least Squares | F-statistic: | 4.145 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0342 |
Time: | 22:59:13 | Log-Likelihood: | -69.627 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 11 | BIC: | 150.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 901.1629 | 719.828 | 1.252 | 0.237 | -683.168 2485.494 |
C(dose)[T.1] | -1268.8805 | 961.724 | -1.319 | 0.214 | -3385.620 847.859 |
expression | -84.1238 | 72.622 | -1.158 | 0.271 | -243.964 75.716 |
expression:C(dose)[T.1] | 131.8681 | 96.049 | 1.373 | 0.197 | -79.535 343.271 |
Omnibus: | 2.339 | Durbin-Watson: | 1.195 |
Prob(Omnibus): | 0.311 | Jarque-Bera (JB): | 1.705 |
Skew: | -0.673 | Prob(JB): | 0.426 |
Kurtosis: | 2.044 | Cond. No. | 1.77e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.913 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0276 |
Time: | 22:59:13 | Log-Likelihood: | -70.813 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 154.0296 | 488.241 | 0.315 | 0.758 | -909.756 1217.815 |
C(dose)[T.1] | 51.2386 | 19.483 | 2.630 | 0.022 | 8.790 93.687 |
expression | -8.7380 | 49.250 | -0.177 | 0.862 | -116.044 98.568 |
Omnibus: | 2.960 | Durbin-Watson: | 0.860 |
Prob(Omnibus): | 0.228 | Jarque-Bera (JB): | 1.893 |
Skew: | -0.863 | Prob(JB): | 0.388 |
Kurtosis: | 2.774 | Cond. No. | 632. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:59:13 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.133 |
Model: | OLS | Adj. R-squared: | 0.067 |
Method: | Least Squares | F-statistic: | 2.000 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.181 |
Time: | 22:59:14 | Log-Likelihood: | -74.227 |
No. Observations: | 15 | AIC: | 152.5 |
Df Residuals: | 13 | BIC: | 153.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -586.5806 | 481.124 | -1.219 | 0.244 | -1625.985 452.824 |
expression | 67.7845 | 47.933 | 1.414 | 0.181 | -35.769 171.338 |
Omnibus: | 0.660 | Durbin-Watson: | 1.142 |
Prob(Omnibus): | 0.719 | Jarque-Bera (JB): | 0.513 |
Skew: | -0.398 | Prob(JB): | 0.774 |
Kurtosis: | 2.567 | Cond. No. | 516. |