AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.939 | 0.344 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.612 |
Method: | Least Squares | F-statistic: | 12.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.32e-05 |
Time: | 03:51:41 | Log-Likelihood: | -100.53 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -210.1400 | 414.976 | -0.506 | 0.618 | -1078.694 658.414 |
C(dose)[T.1] | 27.1273 | 587.570 | 0.046 | 0.964 | -1202.671 1256.925 |
expression | 28.6163 | 44.917 | 0.637 | 0.532 | -65.397 122.629 |
expression:C(dose)[T.1] | 2.3811 | 63.138 | 0.038 | 0.970 | -129.768 134.531 |
Omnibus: | 0.021 | Durbin-Watson: | 1.846 |
Prob(Omnibus): | 0.990 | Jarque-Bera (JB): | 0.154 |
Skew: | -0.059 | Prob(JB): | 0.926 |
Kurtosis: | 2.618 | Cond. No. | 1.64e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.631 |
Method: | Least Squares | F-statistic: | 19.83 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.79e-05 |
Time: | 03:51:41 | Log-Likelihood: | -100.53 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 20 | BIC: | 210.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -221.2724 | 284.292 | -0.778 | 0.445 | -814.295 371.750 |
C(dose)[T.1] | 49.2832 | 9.537 | 5.168 | 0.000 | 29.389 69.177 |
expression | 29.8214 | 30.769 | 0.969 | 0.344 | -34.361 94.003 |
Omnibus: | 0.015 | Durbin-Watson: | 1.844 |
Prob(Omnibus): | 0.993 | Jarque-Bera (JB): | 0.158 |
Skew: | -0.051 | Prob(JB): | 0.924 |
Kurtosis: | 2.607 | Cond. No. | 626. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:51:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.217 |
Model: | OLS | Adj. R-squared: | 0.180 |
Method: | Least Squares | F-statistic: | 5.828 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0250 |
Time: | 03:51:41 | Log-Likelihood: | -110.29 |
No. Observations: | 23 | AIC: | 224.6 |
Df Residuals: | 21 | BIC: | 226.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -846.4028 | 383.667 | -2.206 | 0.039 | -1644.283 -48.523 |
expression | 99.5539 | 41.237 | 2.414 | 0.025 | 13.797 185.311 |
Omnibus: | 3.827 | Durbin-Watson: | 2.356 |
Prob(Omnibus): | 0.148 | Jarque-Bera (JB): | 1.463 |
Skew: | 0.110 | Prob(JB): | 0.481 |
Kurtosis: | 1.784 | Cond. No. | 566. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.358 | 0.267 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.624 |
Model: | OLS | Adj. R-squared: | 0.521 |
Method: | Least Squares | F-statistic: | 6.085 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0107 |
Time: | 03:51:41 | Log-Likelihood: | -67.964 |
No. Observations: | 15 | AIC: | 143.9 |
Df Residuals: | 11 | BIC: | 146.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -153.0309 | 472.507 | -0.324 | 0.752 | -1193.012 886.950 |
C(dose)[T.1] | 1257.4372 | 649.734 | 1.935 | 0.079 | -172.617 2687.492 |
expression | 25.0491 | 53.675 | 0.467 | 0.650 | -93.090 143.188 |
expression:C(dose)[T.1] | -138.5441 | 74.200 | -1.867 | 0.089 | -301.857 24.769 |
Omnibus: | 2.266 | Durbin-Watson: | 0.951 |
Prob(Omnibus): | 0.322 | Jarque-Bera (JB): | 1.418 |
Skew: | -0.743 | Prob(JB): | 0.492 |
Kurtosis: | 2.751 | Cond. No. | 1.14e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.505 |
Model: | OLS | Adj. R-squared: | 0.422 |
Method: | Least Squares | F-statistic: | 6.117 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0147 |
Time: | 03:51:41 | Log-Likelihood: | -70.029 |
No. Observations: | 15 | AIC: | 146.1 |
Df Residuals: | 12 | BIC: | 148.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 485.0402 | 358.532 | 1.353 | 0.201 | -296.134 1266.214 |
C(dose)[T.1] | 44.5561 | 15.440 | 2.886 | 0.014 | 10.914 78.198 |
expression | -47.4500 | 40.718 | -1.165 | 0.267 | -136.168 41.268 |
Omnibus: | 2.045 | Durbin-Watson: | 0.687 |
Prob(Omnibus): | 0.360 | Jarque-Bera (JB): | 1.591 |
Skew: | -0.693 | Prob(JB): | 0.451 |
Kurtosis: | 2.209 | Cond. No. | 428. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:51:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.161 |
Model: | OLS | Adj. R-squared: | 0.097 |
Method: | Least Squares | F-statistic: | 2.498 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.138 |
Time: | 03:51:41 | Log-Likelihood: | -73.982 |
No. Observations: | 15 | AIC: | 152.0 |
Df Residuals: | 13 | BIC: | 153.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 773.9203 | 430.495 | 1.798 | 0.095 | -156.107 1703.948 |
expression | -77.7527 | 49.194 | -1.581 | 0.138 | -184.030 28.524 |
Omnibus: | 0.667 | Durbin-Watson: | 1.334 |
Prob(Omnibus): | 0.716 | Jarque-Bera (JB): | 0.618 |
Skew: | -0.405 | Prob(JB): | 0.734 |
Kurtosis: | 2.424 | Cond. No. | 410. |