AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.975 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.695
Model: OLS Adj. R-squared: 0.647
Method: Least Squares F-statistic: 14.43
Date: Wed, 29 Jan 2025 Prob (F-statistic): 3.89e-05
Time: 00:49:31 Log-Likelihood: -99.452
No. Observations: 23 AIC: 206.9
Df Residuals: 19 BIC: 211.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -117.1076 173.529 -0.675 0.508 -480.308 246.093
C(dose)[T.1] 539.5034 287.802 1.875 0.076 -62.873 1141.880
expression 18.9090 19.143 0.988 0.336 -21.157 58.975
expression:C(dose)[T.1] -53.9205 31.904 -1.690 0.107 -120.696 12.855
Omnibus: 2.581 Durbin-Watson: 1.896
Prob(Omnibus): 0.275 Jarque-Bera (JB): 1.211
Skew: 0.078 Prob(JB): 0.546
Kurtosis: 1.887 Cond. No. 767.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Wed, 29 Jan 2025 Prob (F-statistic): 2.83e-05
Time: 00:49:31 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.7629 145.168 0.405 0.690 -244.052 361.578
C(dose)[T.1] 53.3033 8.835 6.033 0.000 34.873 71.734
expression -0.5027 16.009 -0.031 0.975 -33.897 32.891
Omnibus: 0.335 Durbin-Watson: 1.877
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.493
Skew: 0.064 Prob(JB): 0.782
Kurtosis: 2.295 Cond. No. 303.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Wed, 29 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 00:49:31 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.037
Method: Least Squares F-statistic: 0.2221
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.642
Time: 00:49:31 Log-Likelihood: -112.98
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 190.5015 235.187 0.810 0.427 -298.597 679.600
expression -12.2714 26.039 -0.471 0.642 -66.423 41.880
Omnibus: 3.327 Durbin-Watson: 2.405
Prob(Omnibus): 0.190 Jarque-Bera (JB): 1.462
Skew: 0.208 Prob(JB): 0.481
Kurtosis: 1.837 Cond. No. 300.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
17.626 0.001 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.790
Model: OLS Adj. R-squared: 0.732
Method: Least Squares F-statistic: 13.78
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.000481
Time: 00:49:31 Log-Likelihood: -63.602
No. Observations: 15 AIC: 135.2
Df Residuals: 11 BIC: 138.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -342.5117 180.562 -1.897 0.084 -739.926 54.903
C(dose)[T.1] -180.9815 254.856 -0.710 0.492 -741.916 379.953
expression 43.9923 19.360 2.272 0.044 1.380 86.605
expression:C(dose)[T.1] 22.2176 26.840 0.828 0.425 -36.858 81.293
Omnibus: 1.601 Durbin-Watson: 1.381
Prob(Omnibus): 0.449 Jarque-Bera (JB): 1.002
Skew: -0.616 Prob(JB): 0.606
Kurtosis: 2.709 Cond. No. 649.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.777
Model: OLS Adj. R-squared: 0.740
Method: Least Squares F-statistic: 20.87
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.000124
Time: 00:49:31 Log-Likelihood: -64.055
No. Observations: 15 AIC: 134.1
Df Residuals: 12 BIC: 136.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -450.2321 123.519 -3.645 0.003 -719.357 -181.107
C(dose)[T.1] 29.7778 11.034 2.699 0.019 5.738 53.818
expression 55.5523 13.232 4.198 0.001 26.722 84.382
Omnibus: 0.963 Durbin-Watson: 1.666
Prob(Omnibus): 0.618 Jarque-Bera (JB): 0.869
Skew: -0.457 Prob(JB): 0.648
Kurtosis: 2.256 Cond. No. 238.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.00629
Time: 00:49:31 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.641
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 23.23
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.000335
Time: 00:49:31 Log-Likelihood: -67.613
No. Observations: 15 AIC: 139.2
Df Residuals: 13 BIC: 140.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -576.6415 139.202 -4.142 0.001 -877.370 -275.913
expression 70.5226 14.631 4.820 0.000 38.913 102.132
Omnibus: 2.892 Durbin-Watson: 2.161
Prob(Omnibus): 0.236 Jarque-Bera (JB): 1.114
Skew: -0.072 Prob(JB): 0.573
Kurtosis: 1.673 Cond. No. 220.