AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.327 | 0.574 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.679 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 13.41 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.20e-05 |
Time: | 03:44:24 | Log-Likelihood: | -100.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 19 | BIC: | 212.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -168.6579 | 195.848 | -0.861 | 0.400 | -578.573 241.257 |
C(dose)[T.1] | 486.8659 | 359.069 | 1.356 | 0.191 | -264.675 1238.407 |
expression | 24.3317 | 21.372 | 1.138 | 0.269 | -20.401 69.064 |
expression:C(dose)[T.1] | -47.5568 | 39.461 | -1.205 | 0.243 | -130.150 35.037 |
Omnibus: | 2.040 | Durbin-Watson: | 2.127 |
Prob(Omnibus): | 0.361 | Jarque-Bera (JB): | 1.075 |
Skew: | 0.026 | Prob(JB): | 0.584 |
Kurtosis: | 1.942 | Cond. No. | 918. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.96 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.41e-05 |
Time: | 03:44:24 | Log-Likelihood: | -100.88 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -40.8854 | 166.521 | -0.246 | 0.809 | -388.242 306.471 |
C(dose)[T.1] | 54.2612 | 8.848 | 6.132 | 0.000 | 35.804 72.718 |
expression | 10.3820 | 18.168 | 0.571 | 0.574 | -27.516 48.280 |
Omnibus: | 0.124 | Durbin-Watson: | 2.100 |
Prob(Omnibus): | 0.940 | Jarque-Bera (JB): | 0.347 |
Skew: | 0.001 | Prob(JB): | 0.841 |
Kurtosis: | 2.398 | Cond. No. | 354. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:44:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.042 |
Method: | Least Squares | F-statistic: | 0.1138 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.739 |
Time: | 03:44:24 | Log-Likelihood: | -113.04 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 170.7184 | 269.816 | 0.633 | 0.534 | -390.395 731.832 |
expression | -9.9816 | 29.585 | -0.337 | 0.739 | -71.506 51.543 |
Omnibus: | 3.002 | Durbin-Watson: | 2.405 |
Prob(Omnibus): | 0.223 | Jarque-Bera (JB): | 1.431 |
Skew: | 0.235 | Prob(JB): | 0.489 |
Kurtosis: | 1.872 | Cond. No. | 346. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
16.003 | 0.002 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.783 |
Model: | OLS | Adj. R-squared: | 0.724 |
Method: | Least Squares | F-statistic: | 13.26 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000566 |
Time: | 03:44:24 | Log-Likelihood: | -63.828 |
No. Observations: | 15 | AIC: | 135.7 |
Df Residuals: | 11 | BIC: | 138.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -327.3619 | 189.277 | -1.730 | 0.112 | -743.958 89.234 |
C(dose)[T.1] | -235.6138 | 269.140 | -0.875 | 0.400 | -827.988 356.760 |
expression | 41.8407 | 20.044 | 2.087 | 0.061 | -2.276 85.958 |
expression:C(dose)[T.1] | 27.9903 | 28.068 | 0.997 | 0.340 | -33.786 89.767 |
Omnibus: | 0.888 | Durbin-Watson: | 1.116 |
Prob(Omnibus): | 0.641 | Jarque-Bera (JB): | 0.788 |
Skew: | -0.464 | Prob(JB): | 0.674 |
Kurtosis: | 2.367 | Cond. No. | 678. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.764 |
Model: | OLS | Adj. R-squared: | 0.724 |
Method: | Least Squares | F-statistic: | 19.40 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000174 |
Time: | 03:44:24 | Log-Likelihood: | -64.478 |
No. Observations: | 15 | AIC: | 135.0 |
Df Residuals: | 12 | BIC: | 137.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -462.0535 | 132.573 | -3.485 | 0.005 | -750.906 -173.201 |
C(dose)[T.1] | 32.5575 | 11.111 | 2.930 | 0.013 | 8.348 56.767 |
expression | 56.1156 | 14.028 | 4.000 | 0.002 | 25.552 86.679 |
Omnibus: | 1.227 | Durbin-Watson: | 1.397 |
Prob(Omnibus): | 0.541 | Jarque-Bera (JB): | 0.906 |
Skew: | -0.321 | Prob(JB): | 0.636 |
Kurtosis: | 1.981 | Cond. No. | 251. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:44:24 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.595 |
Model: | OLS | Adj. R-squared: | 0.564 |
Method: | Least Squares | F-statistic: | 19.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000761 |
Time: | 03:44:24 | Log-Likelihood: | -68.525 |
No. Observations: | 15 | AIC: | 141.1 |
Df Residuals: | 13 | BIC: | 142.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -592.3001 | 157.169 | -3.769 | 0.002 | -931.844 -252.756 |
expression | 71.5018 | 16.369 | 4.368 | 0.001 | 36.139 106.864 |
Omnibus: | 1.496 | Durbin-Watson: | 2.030 |
Prob(Omnibus): | 0.473 | Jarque-Bera (JB): | 0.848 |
Skew: | -0.093 | Prob(JB): | 0.654 |
Kurtosis: | 1.850 | Cond. No. | 236. |