AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.174 0.681 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 11.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000125
Time: 04:42:05 Log-Likelihood: -100.90
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 57.6626 53.214 1.084 0.292 -53.715 169.040
C(dose)[T.1] 74.9587 72.285 1.037 0.313 -76.335 226.253
expression -0.5421 8.295 -0.065 0.949 -17.904 16.820
expression:C(dose)[T.1] -3.8517 11.875 -0.324 0.749 -28.706 21.003
Omnibus: 0.281 Durbin-Watson: 1.961
Prob(Omnibus): 0.869 Jarque-Bera (JB): 0.459
Skew: 0.004 Prob(JB): 0.795
Kurtosis: 2.308 Cond. No. 131.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.60e-05
Time: 04:42:05 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.6379 37.455 1.859 0.078 -8.492 147.768
C(dose)[T.1] 51.7276 9.545 5.419 0.000 31.816 71.639
expression -2.4216 5.801 -0.417 0.681 -14.523 9.680
Omnibus: 0.341 Durbin-Watson: 1.932
Prob(Omnibus): 0.843 Jarque-Bera (JB): 0.496
Skew: 0.058 Prob(JB): 0.780
Kurtosis: 2.290 Cond. No. 54.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:05 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.141
Model: OLS Adj. R-squared: 0.100
Method: Least Squares F-statistic: 3.454
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0772
Time: 04:42:06 Log-Likelihood: -111.35
No. Observations: 23 AIC: 226.7
Df Residuals: 21 BIC: 229.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 171.2619 49.711 3.445 0.002 67.882 274.642
expression -15.1217 8.137 -1.858 0.077 -32.043 1.800
Omnibus: 2.561 Durbin-Watson: 2.439
Prob(Omnibus): 0.278 Jarque-Bera (JB): 1.214
Skew: 0.094 Prob(JB): 0.545
Kurtosis: 1.890 Cond. No. 46.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.507 0.490 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.512
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 3.842
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0419
Time: 04:42:06 Log-Likelihood: -69.924
No. Observations: 15 AIC: 147.8
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 228.9672 140.531 1.629 0.132 -80.340 538.274
C(dose)[T.1] -161.1093 217.466 -0.741 0.474 -639.748 317.529
expression -21.5007 18.644 -1.153 0.273 -62.536 19.535
expression:C(dose)[T.1] 28.2576 29.567 0.956 0.360 -36.818 93.333
Omnibus: 3.575 Durbin-Watson: 1.082
Prob(Omnibus): 0.167 Jarque-Bera (JB): 1.929
Skew: -0.875 Prob(JB): 0.381
Kurtosis: 3.145 Cond. No. 269.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.471
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 5.345
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0219
Time: 04:42:06 Log-Likelihood: -70.523
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 144.5496 108.908 1.327 0.209 -92.740 381.839
C(dose)[T.1] 46.1605 15.996 2.886 0.014 11.308 81.013
expression -10.2648 14.418 -0.712 0.490 -41.679 21.149
Omnibus: 2.238 Durbin-Watson: 0.925
Prob(Omnibus): 0.327 Jarque-Bera (JB): 1.690
Skew: -0.764 Prob(JB): 0.430
Kurtosis: 2.391 Cond. No. 107.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.104
Model: OLS Adj. R-squared: 0.035
Method: Least Squares F-statistic: 1.510
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.241
Time: 04:42:06 Log-Likelihood: -74.476
No. Observations: 15 AIC: 153.0
Df Residuals: 13 BIC: 154.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 250.7499 128.173 1.956 0.072 -26.151 527.650
expression -21.3561 17.376 -1.229 0.241 -58.896 16.183
Omnibus: 2.636 Durbin-Watson: 1.746
Prob(Omnibus): 0.268 Jarque-Bera (JB): 1.299
Skew: 0.367 Prob(JB): 0.522
Kurtosis: 1.759 Cond. No. 100.