AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.773 | 0.390 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 12.64 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.95e-05 |
Time: | 05:17:55 | Log-Likelihood: | -100.48 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 404.1603 | 364.309 | 1.109 | 0.281 | -358.347 1166.667 |
C(dose)[T.1] | -205.4266 | 526.842 | -0.390 | 0.701 | -1308.120 897.266 |
expression | -34.0705 | 35.463 | -0.961 | 0.349 | -108.296 40.155 |
expression:C(dose)[T.1] | 25.1093 | 51.537 | 0.487 | 0.632 | -82.758 132.977 |
Omnibus: | 0.303 | Durbin-Watson: | 1.825 |
Prob(Omnibus): | 0.859 | Jarque-Bera (JB): | 0.473 |
Skew: | -0.026 | Prob(JB): | 0.790 |
Kurtosis: | 2.300 | Cond. No. | 1.59e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.60 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.94e-05 |
Time: | 05:17:55 | Log-Likelihood: | -100.63 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 282.0398 | 259.286 | 1.088 | 0.290 | -258.821 822.901 |
C(dose)[T.1] | 51.2183 | 8.937 | 5.731 | 0.000 | 32.577 69.860 |
expression | -22.1811 | 25.237 | -0.879 | 0.390 | -74.824 30.462 |
Omnibus: | 0.008 | Durbin-Watson: | 1.857 |
Prob(Omnibus): | 0.996 | Jarque-Bera (JB): | 0.142 |
Skew: | -0.034 | Prob(JB): | 0.931 |
Kurtosis: | 2.621 | Cond. No. | 623. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:17:55 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.107 |
Model: | OLS | Adj. R-squared: | 0.065 |
Method: | Least Squares | F-statistic: | 2.520 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.127 |
Time: | 05:17:55 | Log-Likelihood: | -111.80 |
No. Observations: | 23 | AIC: | 227.6 |
Df Residuals: | 21 | BIC: | 229.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 705.5277 | 394.269 | 1.789 | 0.088 | -114.399 1525.454 |
expression | -61.1996 | 38.551 | -1.588 | 0.127 | -141.370 18.971 |
Omnibus: | 1.495 | Durbin-Watson: | 2.557 |
Prob(Omnibus): | 0.474 | Jarque-Bera (JB): | 1.177 |
Skew: | 0.345 | Prob(JB): | 0.555 |
Kurtosis: | 2.133 | Cond. No. | 597. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.050 | 0.827 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.469 |
Model: | OLS | Adj. R-squared: | 0.324 |
Method: | Least Squares | F-statistic: | 3.238 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0643 |
Time: | 05:17:55 | Log-Likelihood: | -70.553 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 358.4919 | 528.500 | 0.678 | 0.512 | -804.728 1521.712 |
C(dose)[T.1] | -469.1441 | 852.528 | -0.550 | 0.593 | -2345.545 1407.256 |
expression | -28.6187 | 51.952 | -0.551 | 0.593 | -142.964 85.726 |
expression:C(dose)[T.1] | 50.6858 | 83.165 | 0.609 | 0.555 | -132.358 233.730 |
Omnibus: | 2.808 | Durbin-Watson: | 0.843 |
Prob(Omnibus): | 0.246 | Jarque-Bera (JB): | 1.963 |
Skew: | -0.862 | Prob(JB): | 0.375 |
Kurtosis: | 2.591 | Cond. No. | 1.39e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.930 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0274 |
Time: | 05:17:55 | Log-Likelihood: | -70.802 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 157.3303 | 401.803 | 0.392 | 0.702 | -718.124 1032.785 |
C(dose)[T.1] | 50.3369 | 16.513 | 3.048 | 0.010 | 14.359 86.315 |
expression | -8.8396 | 39.491 | -0.224 | 0.827 | -94.883 77.204 |
Omnibus: | 3.080 | Durbin-Watson: | 0.862 |
Prob(Omnibus): | 0.214 | Jarque-Bera (JB): | 2.041 |
Skew: | -0.893 | Prob(JB): | 0.360 |
Kurtosis: | 2.719 | Cond. No. | 531. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:17:55 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.026 |
Model: | OLS | Adj. R-squared: | -0.049 |
Method: | Least Squares | F-statistic: | 0.3467 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.566 |
Time: | 05:17:55 | Log-Likelihood: | -75.103 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -196.1684 | 492.348 | -0.398 | 0.697 | -1259.822 867.485 |
expression | 28.3064 | 48.075 | 0.589 | 0.566 | -75.553 132.166 |
Omnibus: | 0.888 | Durbin-Watson: | 1.362 |
Prob(Omnibus): | 0.642 | Jarque-Bera (JB): | 0.674 |
Skew: | -0.001 | Prob(JB): | 0.714 |
Kurtosis: | 1.962 | Cond. No. | 508. |