AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.281 | 0.147 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.693 |
Model: | OLS | Adj. R-squared: | 0.644 |
Method: | Least Squares | F-statistic: | 14.29 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 4.13e-05 |
Time: | 23:00:40 | Log-Likelihood: | -99.526 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 19 | BIC: | 211.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -187.1354 | 153.919 | -1.216 | 0.239 | -509.291 135.020 |
C(dose)[T.1] | 210.2493 | 227.344 | 0.925 | 0.367 | -265.587 686.086 |
expression | 32.0793 | 20.444 | 1.569 | 0.133 | -10.711 74.870 |
expression:C(dose)[T.1] | -21.0355 | 29.938 | -0.703 | 0.491 | -83.697 41.626 |
Omnibus: | 0.441 | Durbin-Watson: | 1.829 |
Prob(Omnibus): | 0.802 | Jarque-Bera (JB): | 0.573 |
Skew: | -0.206 | Prob(JB): | 0.751 |
Kurtosis: | 2.347 | Cond. No. | 533. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.653 |
Method: | Least Squares | F-statistic: | 21.74 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 9.62e-06 |
Time: | 23:00:41 | Log-Likelihood: | -99.821 |
No. Observations: | 23 | AIC: | 205.6 |
Df Residuals: | 20 | BIC: | 209.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -113.3352 | 111.079 | -1.020 | 0.320 | -345.042 118.371 |
C(dose)[T.1] | 50.6238 | 8.501 | 5.955 | 0.000 | 32.891 68.356 |
expression | 22.2698 | 14.745 | 1.510 | 0.147 | -8.487 53.027 |
Omnibus: | 0.246 | Durbin-Watson: | 1.743 |
Prob(Omnibus): | 0.884 | Jarque-Bera (JB): | 0.420 |
Skew: | -0.173 | Prob(JB): | 0.810 |
Kurtosis: | 2.435 | Cond. No. | 207. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:00:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.126 |
Model: | OLS | Adj. R-squared: | 0.085 |
Method: | Least Squares | F-statistic: | 3.038 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0959 |
Time: | 23:00:41 | Log-Likelihood: | -111.55 |
No. Observations: | 23 | AIC: | 227.1 |
Df Residuals: | 21 | BIC: | 229.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -229.8127 | 177.701 | -1.293 | 0.210 | -599.362 139.736 |
expression | 40.8264 | 23.421 | 1.743 | 0.096 | -7.881 89.534 |
Omnibus: | 2.074 | Durbin-Watson: | 2.228 |
Prob(Omnibus): | 0.355 | Jarque-Bera (JB): | 1.474 |
Skew: | 0.409 | Prob(JB): | 0.478 |
Kurtosis: | 2.068 | Cond. No. | 203. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.813 | 0.385 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.551 |
Model: | OLS | Adj. R-squared: | 0.429 |
Method: | Least Squares | F-statistic: | 4.509 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0270 |
Time: | 23:00:41 | Log-Likelihood: | -69.286 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 11 | BIC: | 149.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 92.5869 | 181.742 | 0.509 | 0.621 | -307.425 492.599 |
C(dose)[T.1] | -313.0611 | 280.337 | -1.117 | 0.288 | -930.079 303.957 |
expression | -3.4207 | 24.667 | -0.139 | 0.892 | -57.712 50.871 |
expression:C(dose)[T.1] | 48.7264 | 37.809 | 1.289 | 0.224 | -34.491 131.944 |
Omnibus: | 0.042 | Durbin-Watson: | 1.167 |
Prob(Omnibus): | 0.979 | Jarque-Bera (JB): | 0.243 |
Skew: | -0.085 | Prob(JB): | 0.886 |
Kurtosis: | 2.400 | Cond. No. | 368. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.484 |
Model: | OLS | Adj. R-squared: | 0.398 |
Method: | Least Squares | F-statistic: | 5.623 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0189 |
Time: | 23:00:41 | Log-Likelihood: | -70.341 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 12 | BIC: | 148.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -59.9479 | 141.665 | -0.423 | 0.680 | -368.608 248.713 |
C(dose)[T.1] | 47.7103 | 15.321 | 3.114 | 0.009 | 14.329 81.091 |
expression | 17.3190 | 19.202 | 0.902 | 0.385 | -24.519 59.157 |
Omnibus: | 1.272 | Durbin-Watson: | 0.716 |
Prob(Omnibus): | 0.529 | Jarque-Bera (JB): | 1.019 |
Skew: | -0.437 | Prob(JB): | 0.601 |
Kurtosis: | 2.070 | Cond. No. | 141. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:00:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.067 |
Model: | OLS | Adj. R-squared: | -0.005 |
Method: | Least Squares | F-statistic: | 0.9273 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.353 |
Time: | 23:00:42 | Log-Likelihood: | -74.783 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -82.0979 | 182.788 | -0.449 | 0.661 | -476.987 312.791 |
expression | 23.7504 | 24.664 | 0.963 | 0.353 | -29.532 77.033 |
Omnibus: | 0.204 | Durbin-Watson: | 1.495 |
Prob(Omnibus): | 0.903 | Jarque-Bera (JB): | 0.398 |
Skew: | 0.036 | Prob(JB): | 0.819 |
Kurtosis: | 2.205 | Cond. No. | 140. |