AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.814 0.193 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.726
Model: OLS Adj. R-squared: 0.683
Method: Least Squares F-statistic: 16.81
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.41e-05
Time: 22:50:41 Log-Likelihood: -98.203
No. Observations: 23 AIC: 204.4
Df Residuals: 19 BIC: 208.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.2942 252.876 0.464 0.648 -411.981 646.569
C(dose)[T.1] -626.6156 368.463 -1.701 0.105 -1397.818 144.586
expression -7.5214 30.142 -0.250 0.806 -70.609 55.566
expression:C(dose)[T.1] 79.1115 43.306 1.827 0.083 -11.528 169.751
Omnibus: 2.407 Durbin-Watson: 1.811
Prob(Omnibus): 0.300 Jarque-Bera (JB): 1.865
Skew: 0.683 Prob(JB): 0.394
Kurtosis: 2.713 Cond. No. 1.03e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.678
Model: OLS Adj. R-squared: 0.646
Method: Least Squares F-statistic: 21.08
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.19e-05
Time: 22:50:41 Log-Likelihood: -100.06
No. Observations: 23 AIC: 206.1
Df Residuals: 20 BIC: 209.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -204.1624 191.928 -1.064 0.300 -604.518 196.193
C(dose)[T.1] 46.2802 9.898 4.676 0.000 25.633 66.927
expression 30.8040 22.872 1.347 0.193 -16.906 78.514
Omnibus: 0.765 Durbin-Watson: 1.755
Prob(Omnibus): 0.682 Jarque-Bera (JB): 0.724
Skew: 0.374 Prob(JB): 0.696
Kurtosis: 2.557 Cond. No. 395.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:50:41 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.327
Model: OLS Adj. R-squared: 0.294
Method: Least Squares F-statistic: 10.18
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00440
Time: 22:50:41 Log-Likelihood: -108.56
No. Observations: 23 AIC: 221.1
Df Residuals: 21 BIC: 223.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -663.0791 232.869 -2.847 0.010 -1147.357 -178.801
expression 87.4174 27.397 3.191 0.004 30.443 144.392
Omnibus: 0.100 Durbin-Watson: 2.373
Prob(Omnibus): 0.951 Jarque-Bera (JB): 0.103
Skew: -0.098 Prob(JB): 0.950
Kurtosis: 2.737 Cond. No. 339.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.767 0.398 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.527
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 4.089
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0354
Time: 22:50:41 Log-Likelihood: -69.681
No. Observations: 15 AIC: 147.4
Df Residuals: 11 BIC: 150.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 32.9986 202.194 0.163 0.873 -412.027 478.024
C(dose)[T.1] -361.2079 388.738 -0.929 0.373 -1216.814 494.398
expression 4.2853 25.128 0.171 0.868 -51.021 59.592
expression:C(dose)[T.1] 47.0877 45.828 1.027 0.326 -53.780 147.955
Omnibus: 2.800 Durbin-Watson: 0.621
Prob(Omnibus): 0.247 Jarque-Bera (JB): 2.030
Skew: -0.765 Prob(JB): 0.362
Kurtosis: 2.047 Cond. No. 536.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.482
Model: OLS Adj. R-squared: 0.396
Method: Least Squares F-statistic: 5.580
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0193
Time: 22:50:41 Log-Likelihood: -70.369
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -80.7405 169.592 -0.476 0.643 -450.250 288.769
C(dose)[T.1] 37.6786 20.147 1.870 0.086 -6.218 81.575
expression 18.4419 21.063 0.876 0.398 -27.450 64.334
Omnibus: 2.925 Durbin-Watson: 0.553
Prob(Omnibus): 0.232 Jarque-Bera (JB): 2.015
Skew: -0.735 Prob(JB): 0.365
Kurtosis: 1.970 Cond. No. 190.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:50:41 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.331
Model: OLS Adj. R-squared: 0.279
Method: Least Squares F-statistic: 6.428
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0249
Time: 22:50:41 Log-Likelihood: -72.287
No. Observations: 15 AIC: 148.6
Df Residuals: 13 BIC: 150.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -275.8529 145.985 -1.890 0.081 -591.235 39.529
expression 44.1615 17.418 2.535 0.025 6.531 81.792
Omnibus: 2.007 Durbin-Watson: 0.857
Prob(Omnibus): 0.367 Jarque-Bera (JB): 1.239
Skew: -0.429 Prob(JB): 0.538
Kurtosis: 1.883 Cond. No. 149.