AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.970 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.73 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000141 |
Time: | 22:53:04 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.7087 | 88.455 | 0.630 | 0.536 | -129.430 240.847 |
C(dose)[T.1] | 12.2187 | 284.265 | 0.043 | 0.966 | -582.755 607.193 |
expression | -0.1810 | 10.648 | -0.017 | 0.987 | -22.467 22.105 |
expression:C(dose)[T.1] | 4.2323 | 29.599 | 0.143 | 0.888 | -57.719 66.183 |
Omnibus: | 0.265 | Durbin-Watson: | 1.899 |
Prob(Omnibus): | 0.876 | Jarque-Bera (JB): | 0.450 |
Skew: | 0.049 | Prob(JB): | 0.799 |
Kurtosis: | 2.322 | Cond. No. | 683. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.83e-05 |
Time: | 22:53:04 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.1700 | 80.517 | 0.636 | 0.532 | -116.785 219.125 |
C(dose)[T.1] | 52.7900 | 16.909 | 3.122 | 0.005 | 17.519 88.061 |
expression | 0.3666 | 9.688 | 0.038 | 0.970 | -19.843 20.576 |
Omnibus: | 0.298 | Durbin-Watson: | 1.892 |
Prob(Omnibus): | 0.861 | Jarque-Bera (JB): | 0.471 |
Skew: | 0.066 | Prob(JB): | 0.790 |
Kurtosis: | 2.311 | Cond. No. | 171. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:53:04 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.478 |
Model: | OLS | Adj. R-squared: | 0.453 |
Method: | Least Squares | F-statistic: | 19.23 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000258 |
Time: | 22:53:05 | Log-Likelihood: | -105.63 |
No. Observations: | 23 | AIC: | 215.3 |
Df Residuals: | 21 | BIC: | 217.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -156.3528 | 54.079 | -2.891 | 0.009 | -268.816 -43.890 |
expression | 26.2282 | 5.980 | 4.386 | 0.000 | 13.791 38.665 |
Omnibus: | 1.545 | Durbin-Watson: | 2.185 |
Prob(Omnibus): | 0.462 | Jarque-Bera (JB): | 1.219 |
Skew: | 0.363 | Prob(JB): | 0.544 |
Kurtosis: | 2.136 | Cond. No. | 94.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.875 | 0.368 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.521 |
Model: | OLS | Adj. R-squared: | 0.391 |
Method: | Least Squares | F-statistic: | 3.995 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0378 |
Time: | 22:53:05 | Log-Likelihood: | -69.773 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 11 | BIC: | 150.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -91.4577 | 127.372 | -0.718 | 0.488 | -371.801 188.885 |
C(dose)[T.1] | 180.4512 | 154.294 | 1.170 | 0.267 | -159.147 520.049 |
expression | 27.0395 | 21.593 | 1.252 | 0.236 | -20.485 74.564 |
expression:C(dose)[T.1] | -22.7993 | 25.342 | -0.900 | 0.388 | -78.577 32.978 |
Omnibus: | 1.913 | Durbin-Watson: | 1.226 |
Prob(Omnibus): | 0.384 | Jarque-Bera (JB): | 1.057 |
Skew: | -0.647 | Prob(JB): | 0.590 |
Kurtosis: | 2.864 | Cond. No. | 191. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.486 |
Model: | OLS | Adj. R-squared: | 0.401 |
Method: | Least Squares | F-statistic: | 5.678 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0184 |
Time: | 22:53:05 | Log-Likelihood: | -70.305 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 12 | BIC: | 148.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 5.8009 | 66.817 | 0.087 | 0.932 | -139.781 151.383 |
C(dose)[T.1] | 42.4791 | 16.807 | 2.527 | 0.027 | 5.859 79.099 |
expression | 10.4879 | 11.213 | 0.935 | 0.368 | -13.943 34.919 |
Omnibus: | 1.483 | Durbin-Watson: | 1.204 |
Prob(Omnibus): | 0.476 | Jarque-Bera (JB): | 0.645 |
Skew: | -0.508 | Prob(JB): | 0.724 |
Kurtosis: | 2.985 | Cond. No. | 57.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:53:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.213 |
Model: | OLS | Adj. R-squared: | 0.152 |
Method: | Least Squares | F-statistic: | 3.513 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0835 |
Time: | 22:53:05 | Log-Likelihood: | -73.506 |
No. Observations: | 15 | AIC: | 151.0 |
Df Residuals: | 13 | BIC: | 152.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -46.8400 | 75.507 | -0.620 | 0.546 | -209.963 116.283 |
expression | 22.5979 | 12.057 | 1.874 | 0.084 | -3.450 48.646 |
Omnibus: | 4.401 | Durbin-Watson: | 1.771 |
Prob(Omnibus): | 0.111 | Jarque-Bera (JB): | 2.072 |
Skew: | 0.858 | Prob(JB): | 0.355 |
Kurtosis: | 3.611 | Cond. No. | 53.8 |