AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.557 | 0.464 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.605 |
Method: | Least Squares | F-statistic: | 12.25 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000109 |
Time: | 04:50:21 | Log-Likelihood: | -100.72 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 88.7313 | 49.676 | 1.786 | 0.090 | -15.243 192.705 |
C(dose)[T.1] | 35.4591 | 77.924 | 0.455 | 0.654 | -127.637 198.555 |
expression | -6.0964 | 8.705 | -0.700 | 0.492 | -24.317 12.124 |
expression:C(dose)[T.1] | 2.8433 | 14.556 | 0.195 | 0.847 | -27.623 33.310 |
Omnibus: | 0.059 | Durbin-Watson: | 1.723 |
Prob(Omnibus): | 0.971 | Jarque-Bera (JB): | 0.279 |
Skew: | 0.038 | Prob(JB): | 0.870 |
Kurtosis: | 2.466 | Cond. No. | 121. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.624 |
Method: | Least Squares | F-statistic: | 19.29 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.15e-05 |
Time: | 04:50:21 | Log-Likelihood: | -100.75 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 20 | BIC: | 210.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 82.9725 | 39.009 | 2.127 | 0.046 | 1.601 164.344 |
C(dose)[T.1] | 50.5632 | 9.415 | 5.370 | 0.000 | 30.923 70.203 |
expression | -5.0794 | 6.807 | -0.746 | 0.464 | -19.279 9.120 |
Omnibus: | 0.069 | Durbin-Watson: | 1.776 |
Prob(Omnibus): | 0.966 | Jarque-Bera (JB): | 0.291 |
Skew: | 0.038 | Prob(JB): | 0.865 |
Kurtosis: | 2.455 | Cond. No. | 51.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:50:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.166 |
Model: | OLS | Adj. R-squared: | 0.126 |
Method: | Least Squares | F-statistic: | 4.186 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0535 |
Time: | 04:50:21 | Log-Likelihood: | -111.01 |
No. Observations: | 23 | AIC: | 226.0 |
Df Residuals: | 21 | BIC: | 228.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 185.1206 | 51.940 | 3.564 | 0.002 | 77.106 293.135 |
expression | -19.5130 | 9.538 | -2.046 | 0.053 | -39.348 0.322 |
Omnibus: | 1.606 | Durbin-Watson: | 2.184 |
Prob(Omnibus): | 0.448 | Jarque-Bera (JB): | 1.105 |
Skew: | 0.254 | Prob(JB): | 0.575 |
Kurtosis: | 2.054 | Cond. No. | 44.3 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.535 | 0.479 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.631 |
Model: | OLS | Adj. R-squared: | 0.530 |
Method: | Least Squares | F-statistic: | 6.257 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00979 |
Time: | 04:50:21 | Log-Likelihood: | -67.833 |
No. Observations: | 15 | AIC: | 143.7 |
Df Residuals: | 11 | BIC: | 146.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 130.8169 | 98.913 | 1.323 | 0.213 | -86.889 348.523 |
C(dose)[T.1] | -279.5312 | 154.791 | -1.806 | 0.098 | -620.224 61.162 |
expression | -11.8148 | 18.345 | -0.644 | 0.533 | -52.192 28.562 |
expression:C(dose)[T.1] | 65.9090 | 30.368 | 2.170 | 0.053 | -0.931 132.749 |
Omnibus: | 1.246 | Durbin-Watson: | 0.779 |
Prob(Omnibus): | 0.536 | Jarque-Bera (JB): | 1.054 |
Skew: | -0.515 | Prob(JB): | 0.590 |
Kurtosis: | 2.209 | Cond. No. | 154. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.384 |
Method: | Least Squares | F-statistic: | 5.370 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0216 |
Time: | 04:50:21 | Log-Likelihood: | -70.506 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1.7788 | 90.448 | 0.020 | 0.985 | -195.291 198.848 |
C(dose)[T.1] | 54.8255 | 17.216 | 3.185 | 0.008 | 17.316 92.335 |
expression | 12.2363 | 16.728 | 0.732 | 0.479 | -24.210 48.683 |
Omnibus: | 2.387 | Durbin-Watson: | 0.763 |
Prob(Omnibus): | 0.303 | Jarque-Bera (JB): | 1.742 |
Skew: | -0.794 | Prob(JB): | 0.419 |
Kurtosis: | 2.484 | Cond. No. | 63.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:50:21 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.026 |
Model: | OLS | Adj. R-squared: | -0.049 |
Method: | Least Squares | F-statistic: | 0.3514 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.564 |
Time: | 04:50:21 | Log-Likelihood: | -75.100 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 152.9314 | 100.483 | 1.522 | 0.152 | -64.150 370.013 |
expression | -11.5756 | 19.528 | -0.593 | 0.564 | -53.764 30.613 |
Omnibus: | 1.567 | Durbin-Watson: | 1.577 |
Prob(Omnibus): | 0.457 | Jarque-Bera (JB): | 0.864 |
Skew: | 0.089 | Prob(JB): | 0.649 |
Kurtosis: | 1.838 | Cond. No. | 53.5 |