AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.599 0.448 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.73
Date: Thu, 03 Apr 2025 Prob (F-statistic): 8.59e-05
Time: 22:52:12 Log-Likelihood: -100.43
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.3045 108.213 0.326 0.748 -191.188 261.797
C(dose)[T.1] 141.6525 128.015 1.107 0.282 -126.287 409.592
expression 2.5489 14.568 0.175 0.863 -27.942 33.040
expression:C(dose)[T.1] -12.0542 17.297 -0.697 0.494 -48.258 24.150
Omnibus: 0.182 Durbin-Watson: 2.020
Prob(Omnibus): 0.913 Jarque-Bera (JB): 0.172
Skew: 0.161 Prob(JB): 0.918
Kurtosis: 2.724 Cond. No. 313.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.35
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.11e-05
Time: 22:52:12 Log-Likelihood: -100.72
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.7171 57.808 1.708 0.103 -21.868 219.302
C(dose)[T.1] 52.6525 8.686 6.061 0.000 34.533 70.772
expression -6.0013 7.753 -0.774 0.448 -22.173 10.171
Omnibus: 0.110 Durbin-Watson: 2.014
Prob(Omnibus): 0.946 Jarque-Bera (JB): 0.255
Skew: 0.139 Prob(JB): 0.880
Kurtosis: 2.565 Cond. No. 101.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:52:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.033
Model: OLS Adj. R-squared: -0.013
Method: Least Squares F-statistic: 0.7239
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.404
Time: 22:52:12 Log-Likelihood: -112.71
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.1230 93.599 1.700 0.104 -35.528 353.774
expression -10.7860 12.677 -0.851 0.404 -37.150 15.578
Omnibus: 2.053 Durbin-Watson: 2.598
Prob(Omnibus): 0.358 Jarque-Bera (JB): 1.225
Skew: 0.247 Prob(JB): 0.542
Kurtosis: 1.983 Cond. No. 99.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.088 0.771 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.490
Model: OLS Adj. R-squared: 0.351
Method: Least Squares F-statistic: 3.519
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0525
Time: 22:52:12 Log-Likelihood: -70.255
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 196.7251 140.615 1.399 0.189 -112.766 506.216
C(dose)[T.1] -94.1815 162.286 -0.580 0.573 -451.371 263.008
expression -23.0791 25.015 -0.923 0.376 -78.136 31.978
expression:C(dose)[T.1] 25.5158 28.615 0.892 0.392 -37.464 88.496
Omnibus: 1.877 Durbin-Watson: 0.758
Prob(Omnibus): 0.391 Jarque-Bera (JB): 1.300
Skew: -0.691 Prob(JB): 0.522
Kurtosis: 2.589 Cond. No. 182.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 4.965
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0268
Time: 22:52:13 Log-Likelihood: -70.778
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 87.4831 68.431 1.278 0.225 -61.615 236.582
C(dose)[T.1] 49.8285 15.826 3.149 0.008 15.348 84.309
expression -3.5797 12.043 -0.297 0.771 -29.818 22.659
Omnibus: 2.557 Durbin-Watson: 0.832
Prob(Omnibus): 0.278 Jarque-Bera (JB): 1.743
Skew: -0.814 Prob(JB): 0.418
Kurtosis: 2.632 Cond. No. 51.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:52:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.009560
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.924
Time: 22:52:13 Log-Likelihood: -75.295
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.0374 88.841 0.957 0.356 -106.892 276.966
expression 1.5148 15.493 0.098 0.924 -31.957 34.986
Omnibus: 0.488 Durbin-Watson: 1.603
Prob(Omnibus): 0.784 Jarque-Bera (JB): 0.535
Skew: 0.026 Prob(JB): 0.765
Kurtosis: 2.076 Cond. No. 51.7