AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.899 | 0.183 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.642 |
Method: | Least Squares | F-statistic: | 14.13 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.44e-05 |
Time: | 05:21:13 | Log-Likelihood: | -99.617 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 19 | BIC: | 211.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 177.9909 | 280.153 | 0.635 | 0.533 | -408.377 764.359 |
C(dose)[T.1] | 378.3085 | 405.228 | 0.934 | 0.362 | -469.844 1226.461 |
expression | -13.5140 | 30.579 | -0.442 | 0.664 | -77.517 50.489 |
expression:C(dose)[T.1] | -36.9895 | 44.948 | -0.823 | 0.421 | -131.068 57.088 |
Omnibus: | 1.541 | Durbin-Watson: | 1.994 |
Prob(Omnibus): | 0.463 | Jarque-Bera (JB): | 1.040 |
Skew: | 0.209 | Prob(JB): | 0.594 |
Kurtosis: | 2.045 | Cond. No. | 1.12e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.679 |
Model: | OLS | Adj. R-squared: | 0.647 |
Method: | Least Squares | F-statistic: | 21.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.14e-05 |
Time: | 05:21:13 | Log-Likelihood: | -100.02 |
No. Observations: | 23 | AIC: | 206.0 |
Df Residuals: | 20 | BIC: | 209.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 334.8018 | 203.704 | 1.644 | 0.116 | -90.118 759.722 |
C(dose)[T.1] | 44.9433 | 10.361 | 4.338 | 0.000 | 23.331 66.555 |
expression | -30.6338 | 22.230 | -1.378 | 0.183 | -77.006 15.738 |
Omnibus: | 0.682 | Durbin-Watson: | 2.083 |
Prob(Omnibus): | 0.711 | Jarque-Bera (JB): | 0.672 |
Skew: | 0.105 | Prob(JB): | 0.714 |
Kurtosis: | 2.189 | Cond. No. | 446. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:21:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.378 |
Model: | OLS | Adj. R-squared: | 0.348 |
Method: | Least Squares | F-statistic: | 12.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00180 |
Time: | 05:21:13 | Log-Likelihood: | -107.65 |
No. Observations: | 23 | AIC: | 219.3 |
Df Residuals: | 21 | BIC: | 221.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 868.1644 | 220.809 | 3.932 | 0.001 | 408.966 1327.363 |
expression | -87.3280 | 24.449 | -3.572 | 0.002 | -138.172 -36.484 |
Omnibus: | 0.055 | Durbin-Watson: | 2.265 |
Prob(Omnibus): | 0.973 | Jarque-Bera (JB): | 0.200 |
Skew: | -0.099 | Prob(JB): | 0.905 |
Kurtosis: | 2.588 | Cond. No. | 355. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.765 | 0.122 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.568 |
Method: | Least Squares | F-statistic: | 7.131 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00627 |
Time: | 05:21:13 | Log-Likelihood: | -67.200 |
No. Observations: | 15 | AIC: | 142.4 |
Df Residuals: | 11 | BIC: | 145.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.8862 | 246.310 | 0.523 | 0.611 | -413.240 671.012 |
C(dose)[T.1] | 795.7026 | 396.041 | 2.009 | 0.070 | -75.978 1667.384 |
expression | -7.4606 | 29.879 | -0.250 | 0.807 | -73.223 58.302 |
expression:C(dose)[T.1] | -89.3095 | 47.658 | -1.874 | 0.088 | -194.205 15.586 |
Omnibus: | 0.354 | Durbin-Watson: | 1.270 |
Prob(Omnibus): | 0.838 | Jarque-Bera (JB): | 0.286 |
Skew: | -0.277 | Prob(JB): | 0.867 |
Kurtosis: | 2.610 | Cond. No. | 658. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.552 |
Model: | OLS | Adj. R-squared: | 0.477 |
Method: | Least Squares | F-statistic: | 7.393 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00809 |
Time: | 05:21:13 | Log-Likelihood: | -69.278 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 12 | BIC: | 146.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 418.0518 | 211.122 | 1.980 | 0.071 | -41.944 878.048 |
C(dose)[T.1] | 53.9492 | 14.475 | 3.727 | 0.003 | 22.412 85.487 |
expression | -42.5635 | 25.598 | -1.663 | 0.122 | -98.337 13.210 |
Omnibus: | 0.673 | Durbin-Watson: | 1.204 |
Prob(Omnibus): | 0.714 | Jarque-Bera (JB): | 0.612 |
Skew: | -0.086 | Prob(JB): | 0.737 |
Kurtosis: | 2.026 | Cond. No. | 252. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:21:13 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.033 |
Model: | OLS | Adj. R-squared: | -0.041 |
Method: | Least Squares | F-statistic: | 0.4487 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.515 |
Time: | 05:21:13 | Log-Likelihood: | -75.046 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 290.5004 | 294.009 | 0.988 | 0.341 | -344.667 925.667 |
expression | -23.7229 | 35.414 | -0.670 | 0.515 | -100.231 52.785 |
Omnibus: | 0.599 | Durbin-Watson: | 1.817 |
Prob(Omnibus): | 0.741 | Jarque-Bera (JB): | 0.582 |
Skew: | 0.066 | Prob(JB): | 0.748 |
Kurtosis: | 2.044 | Cond. No. | 248. |