AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.042 | 0.840 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.605 |
Method: | Least Squares | F-statistic: | 12.21 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000111 |
Time: | 19:46:37 | Log-Likelihood: | -100.75 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -138.5232 | 268.437 | -0.516 | 0.612 | -700.368 423.321 |
C(dose)[T.1] | 254.4703 | 289.508 | 0.879 | 0.390 | -351.478 860.419 |
expression | 23.6814 | 32.975 | 0.718 | 0.481 | -45.336 92.699 |
expression:C(dose)[T.1] | -24.7353 | 35.661 | -0.694 | 0.496 | -99.374 49.904 |
Omnibus: | 0.752 | Durbin-Watson: | 1.842 |
Prob(Omnibus): | 0.687 | Jarque-Bera (JB): | 0.697 |
Skew: | -0.088 | Prob(JB): | 0.706 |
Kurtosis: | 2.166 | Cond. No. | 808. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.55 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.78e-05 |
Time: | 19:46:37 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 33.6036 | 101.025 | 0.333 | 0.743 | -177.130 244.338 |
C(dose)[T.1] | 53.7586 | 9.000 | 5.973 | 0.000 | 34.984 72.533 |
expression | 2.5318 | 12.391 | 0.204 | 0.840 | -23.315 28.379 |
Omnibus: | 0.477 | Durbin-Watson: | 1.840 |
Prob(Omnibus): | 0.788 | Jarque-Bera (JB): | 0.569 |
Skew: | 0.061 | Prob(JB): | 0.752 |
Kurtosis: | 2.239 | Cond. No. | 189. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 19:46:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.025 |
Model: | OLS | Adj. R-squared: | -0.021 |
Method: | Least Squares | F-statistic: | 0.5400 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.471 |
Time: | 19:46:37 | Log-Likelihood: | -112.81 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 196.0140 | 158.426 | 1.237 | 0.230 | -133.450 525.478 |
expression | -14.4309 | 19.639 | -0.735 | 0.471 | -55.272 26.410 |
Omnibus: | 3.760 | Durbin-Watson: | 2.474 |
Prob(Omnibus): | 0.153 | Jarque-Bera (JB): | 1.672 |
Skew: | 0.299 | Prob(JB): | 0.433 |
Kurtosis: | 1.822 | Cond. No. | 182. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.397 | 0.540 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.469 |
Model: | OLS | Adj. R-squared: | 0.324 |
Method: | Least Squares | F-statistic: | 3.239 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0643 |
Time: | 19:46:37 | Log-Likelihood: | -70.553 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 216.0810 | 281.576 | 0.767 | 0.459 | -403.663 835.826 |
C(dose)[T.1] | -31.9857 | 334.589 | -0.096 | 0.926 | -768.411 704.439 |
expression | -18.9260 | 35.818 | -0.528 | 0.608 | -97.761 59.909 |
expression:C(dose)[T.1] | 9.9526 | 43.111 | 0.231 | 0.822 | -84.934 104.840 |
Omnibus: | 3.731 | Durbin-Watson: | 0.839 |
Prob(Omnibus): | 0.155 | Jarque-Bera (JB): | 2.399 |
Skew: | -0.976 | Prob(JB): | 0.301 |
Kurtosis: | 2.843 | Cond. No. | 469. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.466 |
Model: | OLS | Adj. R-squared: | 0.378 |
Method: | Least Squares | F-statistic: | 5.245 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0231 |
Time: | 19:46:37 | Log-Likelihood: | -70.589 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 162.1211 | 150.690 | 1.076 | 0.303 | -166.203 490.446 |
C(dose)[T.1] | 45.1514 | 16.763 | 2.693 | 0.020 | 8.628 81.675 |
expression | -12.0560 | 19.131 | -0.630 | 0.540 | -53.739 29.627 |
Omnibus: | 4.149 | Durbin-Watson: | 0.814 |
Prob(Omnibus): | 0.126 | Jarque-Bera (JB): | 2.599 |
Skew: | -1.019 | Prob(JB): | 0.273 |
Kurtosis: | 2.948 | Cond. No. | 153. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 19:46:38 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.144 |
Model: | OLS | Adj. R-squared: | 0.078 |
Method: | Least Squares | F-statistic: | 2.184 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.163 |
Time: | 19:46:38 | Log-Likelihood: | -74.135 |
No. Observations: | 15 | AIC: | 152.3 |
Df Residuals: | 13 | BIC: | 153.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 337.6512 | 165.356 | 2.042 | 0.062 | -19.579 694.882 |
expression | -31.7876 | 21.509 | -1.478 | 0.163 | -78.254 14.679 |
Omnibus: | 0.520 | Durbin-Watson: | 1.557 |
Prob(Omnibus): | 0.771 | Jarque-Bera (JB): | 0.548 |
Skew: | -0.028 | Prob(JB): | 0.760 |
Kurtosis: | 2.065 | Cond. No. | 137. |