AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.288 0.597 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000103
Time: 06:25:20 Log-Likelihood: -100.66
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.1740 129.762 0.757 0.459 -173.421 369.770
C(dose)[T.1] -37.4106 144.144 -0.260 0.798 -339.107 264.286
expression -8.1983 24.170 -0.339 0.738 -58.787 42.390
expression:C(dose)[T.1] 16.8954 26.813 0.630 0.536 -39.224 73.015
Omnibus: 0.542 Durbin-Watson: 1.884
Prob(Omnibus): 0.763 Jarque-Bera (JB): 0.626
Skew: 0.169 Prob(JB): 0.731
Kurtosis: 2.265 Cond. No. 271.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.46e-05
Time: 06:25:20 Log-Likelihood: -100.90
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 24.5485 55.587 0.442 0.664 -91.405 140.502
C(dose)[T.1] 53.2469 8.709 6.114 0.000 35.080 71.414
expression 5.5307 10.304 0.537 0.597 -15.964 27.025
Omnibus: 0.729 Durbin-Watson: 2.005
Prob(Omnibus): 0.694 Jarque-Bera (JB): 0.752
Skew: 0.240 Prob(JB): 0.687
Kurtosis: 2.255 Cond. No. 71.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:25:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.040
Method: Least Squares F-statistic: 0.1570
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.696
Time: 06:25:20 Log-Likelihood: -113.02
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 43.4829 91.744 0.474 0.640 -147.309 234.275
expression 6.7469 17.030 0.396 0.696 -28.669 42.163
Omnibus: 2.884 Durbin-Watson: 2.546
Prob(Omnibus): 0.237 Jarque-Bera (JB): 1.500
Skew: 0.301 Prob(JB): 0.472
Kurtosis: 1.903 Cond. No. 71.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.488 0.246 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.628
Model: OLS Adj. R-squared: 0.526
Method: Least Squares F-statistic: 6.178
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0102
Time: 06:25:20 Log-Likelihood: -67.893
No. Observations: 15 AIC: 143.8
Df Residuals: 11 BIC: 146.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.2793 104.491 0.223 0.828 -206.704 253.262
C(dose)[T.1] 291.8367 136.854 2.132 0.056 -9.376 593.049
expression 8.4662 19.948 0.424 0.679 -35.439 52.371
expression:C(dose)[T.1] -51.4738 27.579 -1.866 0.089 -112.175 9.227
Omnibus: 0.860 Durbin-Watson: 1.184
Prob(Omnibus): 0.650 Jarque-Bera (JB): 0.784
Skew: -0.450 Prob(JB): 0.676
Kurtosis: 2.334 Cond. No. 140.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.510
Model: OLS Adj. R-squared: 0.428
Method: Least Squares F-statistic: 6.235
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0139
Time: 06:25:20 Log-Likelihood: -69.956
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 163.7091 79.657 2.055 0.062 -9.849 337.267
C(dose)[T.1] 38.1273 17.399 2.191 0.049 0.219 76.036
expression -18.4630 15.133 -1.220 0.246 -51.435 14.509
Omnibus: 1.585 Durbin-Watson: 1.070
Prob(Omnibus): 0.453 Jarque-Bera (JB): 1.212
Skew: -0.637 Prob(JB): 0.545
Kurtosis: 2.437 Cond. No. 55.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:25:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.313
Model: OLS Adj. R-squared: 0.261
Method: Least Squares F-statistic: 5.933
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0300
Time: 06:25:20 Log-Likelihood: -72.481
No. Observations: 15 AIC: 149.0
Df Residuals: 13 BIC: 150.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 268.6939 72.351 3.714 0.003 112.389 424.999
expression -35.7560 14.680 -2.436 0.030 -67.470 -4.042
Omnibus: 0.541 Durbin-Watson: 1.533
Prob(Omnibus): 0.763 Jarque-Bera (JB): 0.481
Skew: -0.364 Prob(JB): 0.786
Kurtosis: 2.511 Cond. No. 44.1