AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.502 0.487 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.29
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000107
Time: 03:47:04 Log-Likelihood: -100.70
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -30.3638 191.111 -0.159 0.875 -430.365 369.637
C(dose)[T.1] -98.8774 417.913 -0.237 0.816 -973.580 775.825
expression 8.0609 18.206 0.443 0.663 -30.045 46.167
expression:C(dose)[T.1] 13.3289 38.187 0.349 0.731 -66.598 93.256
Omnibus: 0.457 Durbin-Watson: 1.988
Prob(Omnibus): 0.796 Jarque-Bera (JB): 0.578
Skew: 0.166 Prob(JB): 0.749
Kurtosis: 2.298 Cond. No. 1.21e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.21e-05
Time: 03:47:04 Log-Likelihood: -100.78
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -62.1499 164.289 -0.378 0.709 -404.850 280.550
C(dose)[T.1] 46.9223 12.528 3.745 0.001 20.789 73.055
expression 11.0905 15.649 0.709 0.487 -21.552 43.733
Omnibus: 0.313 Durbin-Watson: 1.962
Prob(Omnibus): 0.855 Jarque-Bera (JB): 0.478
Skew: 0.182 Prob(JB): 0.787
Kurtosis: 2.395 Cond. No. 414.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:47:05 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.418
Model: OLS Adj. R-squared: 0.390
Method: Least Squares F-statistic: 15.05
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000865
Time: 03:47:05 Log-Likelihood: -106.89
No. Observations: 23 AIC: 217.8
Df Residuals: 21 BIC: 220.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -495.6882 148.407 -3.340 0.003 -804.318 -187.058
expression 53.4350 13.772 3.880 0.001 24.794 82.076
Omnibus: 1.824 Durbin-Watson: 2.300
Prob(Omnibus): 0.402 Jarque-Bera (JB): 1.131
Skew: 0.217 Prob(JB): 0.568
Kurtosis: 2.004 Cond. No. 293.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.096 0.316 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.564
Model: OLS Adj. R-squared: 0.445
Method: Least Squares F-statistic: 4.745
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0233
Time: 03:47:05 Log-Likelihood: -69.073
No. Observations: 15 AIC: 146.1
Df Residuals: 11 BIC: 149.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 377.2516 399.291 0.945 0.365 -501.581 1256.085
C(dose)[T.1] -536.3662 438.725 -1.223 0.247 -1501.994 429.262
expression -33.6604 43.365 -0.776 0.454 -129.106 61.785
expression:C(dose)[T.1] 62.5788 47.359 1.321 0.213 -41.658 166.816
Omnibus: 0.132 Durbin-Watson: 1.276
Prob(Omnibus): 0.936 Jarque-Bera (JB): 0.159
Skew: -0.153 Prob(JB): 0.923
Kurtosis: 2.599 Cond. No. 884.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.411
Method: Least Squares F-statistic: 5.879
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0166
Time: 03:47:05 Log-Likelihood: -70.177
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -105.6843 165.717 -0.638 0.536 -466.751 255.382
C(dose)[T.1] 42.9763 16.196 2.654 0.021 7.689 78.264
expression 18.8077 17.964 1.047 0.316 -20.333 57.949
Omnibus: 0.732 Durbin-Watson: 1.177
Prob(Omnibus): 0.694 Jarque-Bera (JB): 0.666
Skew: -0.424 Prob(JB): 0.717
Kurtosis: 2.411 Cond. No. 210.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:47:05 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.199
Model: OLS Adj. R-squared: 0.137
Method: Least Squares F-statistic: 3.220
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0960
Time: 03:47:05 Log-Likelihood: -73.640
No. Observations: 15 AIC: 151.3
Df Residuals: 13 BIC: 152.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -246.8067 189.952 -1.299 0.216 -657.173 163.559
expression 36.2949 20.226 1.794 0.096 -7.400 79.990
Omnibus: 0.958 Durbin-Watson: 1.667
Prob(Omnibus): 0.619 Jarque-Bera (JB): 0.048
Skew: 0.027 Prob(JB): 0.976
Kurtosis: 3.272 Cond. No. 198.