AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.028 | 0.870 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.671 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 12.91 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.86e-05 |
Time: | 05:23:50 | Log-Likelihood: | -100.32 |
No. Observations: | 23 | AIC: | 208.6 |
Df Residuals: | 19 | BIC: | 213.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 28.7643 | 85.582 | 0.336 | 0.740 | -150.360 207.889 |
C(dose)[T.1] | 302.3187 | 223.602 | 1.352 | 0.192 | -165.685 770.323 |
expression | 3.7977 | 12.742 | 0.298 | 0.769 | -22.872 30.467 |
expression:C(dose)[T.1] | -34.8532 | 31.388 | -1.110 | 0.281 | -100.550 30.843 |
Omnibus: | 0.035 | Durbin-Watson: | 1.698 |
Prob(Omnibus): | 0.983 | Jarque-Bera (JB): | 0.085 |
Skew: | 0.031 | Prob(JB): | 0.958 |
Kurtosis: | 2.708 | Cond. No. | 424. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.80e-05 |
Time: | 05:23:50 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.2454 | 78.705 | 0.854 | 0.403 | -96.931 231.422 |
C(dose)[T.1] | 54.3066 | 10.529 | 5.158 | 0.000 | 32.344 76.269 |
expression | -1.9459 | 11.713 | -0.166 | 0.870 | -26.378 22.486 |
Omnibus: | 0.396 | Durbin-Watson: | 1.876 |
Prob(Omnibus): | 0.820 | Jarque-Bera (JB): | 0.525 |
Skew: | 0.039 | Prob(JB): | 0.769 |
Kurtosis: | 2.264 | Cond. No. | 128. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:23:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.183 |
Model: | OLS | Adj. R-squared: | 0.144 |
Method: | Least Squares | F-statistic: | 4.715 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0415 |
Time: | 05:23:50 | Log-Likelihood: | -110.78 |
No. Observations: | 23 | AIC: | 225.6 |
Df Residuals: | 21 | BIC: | 227.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -139.0826 | 100.975 | -1.377 | 0.183 | -349.073 70.907 |
expression | 31.5361 | 14.523 | 2.171 | 0.042 | 1.333 61.739 |
Omnibus: | 1.983 | Durbin-Watson: | 2.246 |
Prob(Omnibus): | 0.371 | Jarque-Bera (JB): | 1.376 |
Skew: | 0.368 | Prob(JB): | 0.503 |
Kurtosis: | 2.054 | Cond. No. | 110. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.599 | 0.454 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.503 |
Model: | OLS | Adj. R-squared: | 0.368 |
Method: | Least Squares | F-statistic: | 3.714 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0458 |
Time: | 05:23:50 | Log-Likelihood: | -70.054 |
No. Observations: | 15 | AIC: | 148.1 |
Df Residuals: | 11 | BIC: | 150.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 131.2968 | 253.733 | 0.517 | 0.615 | -427.165 689.759 |
C(dose)[T.1] | -195.4481 | 305.178 | -0.640 | 0.535 | -867.140 476.244 |
expression | -8.8723 | 35.212 | -0.252 | 0.806 | -86.373 68.629 |
expression:C(dose)[T.1] | 33.0710 | 41.870 | 0.790 | 0.446 | -59.083 125.225 |
Omnibus: | 0.242 | Durbin-Watson: | 1.086 |
Prob(Omnibus): | 0.886 | Jarque-Bera (JB): | 0.403 |
Skew: | -0.208 | Prob(JB): | 0.817 |
Kurtosis: | 2.312 | Cond. No. | 429. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.475 |
Model: | OLS | Adj. R-squared: | 0.388 |
Method: | Least Squares | F-statistic: | 5.429 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0209 |
Time: | 05:23:50 | Log-Likelihood: | -70.467 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -37.0788 | 135.442 | -0.274 | 0.789 | -332.181 258.024 |
C(dose)[T.1] | 45.2491 | 16.185 | 2.796 | 0.016 | 9.986 80.512 |
expression | 14.5177 | 18.750 | 0.774 | 0.454 | -26.336 55.371 |
Omnibus: | 1.173 | Durbin-Watson: | 0.997 |
Prob(Omnibus): | 0.556 | Jarque-Bera (JB): | 0.996 |
Skew: | -0.527 | Prob(JB): | 0.608 |
Kurtosis: | 2.305 | Cond. No. | 133. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:23:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.133 |
Model: | OLS | Adj. R-squared: | 0.066 |
Method: | Least Squares | F-statistic: | 1.995 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.181 |
Time: | 05:23:50 | Log-Likelihood: | -74.229 |
No. Observations: | 15 | AIC: | 152.5 |
Df Residuals: | 13 | BIC: | 153.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -134.2127 | 161.628 | -0.830 | 0.421 | -483.388 214.963 |
expression | 31.0310 | 21.972 | 1.412 | 0.181 | -16.436 78.498 |
Omnibus: | 0.577 | Durbin-Watson: | 1.489 |
Prob(Omnibus): | 0.749 | Jarque-Bera (JB): | 0.052 |
Skew: | 0.144 | Prob(JB): | 0.974 |
Kurtosis: | 3.007 | Cond. No. | 128. |