AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.796 0.383 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.43
Date: Mon, 27 Jan 2025 Prob (F-statistic): 9.94e-05
Time: 22:41:31 Log-Likelihood: -100.61
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.4670 48.590 1.759 0.095 -16.234 187.168
C(dose)[T.1] 51.4908 70.517 0.730 0.474 -96.102 199.084
expression -5.1784 7.986 -0.648 0.524 -21.893 11.536
expression:C(dose)[T.1] -0.3250 12.401 -0.026 0.979 -26.280 25.630
Omnibus: 0.347 Durbin-Watson: 1.880
Prob(Omnibus): 0.841 Jarque-Bera (JB): 0.507
Skew: 0.141 Prob(JB): 0.776
Kurtosis: 2.330 Cond. No. 119.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.63
Date: Mon, 27 Jan 2025 Prob (F-statistic): 1.92e-05
Time: 22:41:31 Log-Likelihood: -100.61
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.2805 36.435 2.368 0.028 10.278 162.283
C(dose)[T.1] 49.6609 9.536 5.207 0.000 29.768 69.554
expression -5.3131 5.955 -0.892 0.383 -17.735 7.109
Omnibus: 0.337 Durbin-Watson: 1.878
Prob(Omnibus): 0.845 Jarque-Bera (JB): 0.500
Skew: 0.139 Prob(JB): 0.779
Kurtosis: 2.333 Cond. No. 50.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:41:31 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.205
Model: OLS Adj. R-squared: 0.167
Method: Least Squares F-statistic: 5.411
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0301
Time: 22:41:31 Log-Likelihood: -110.47
No. Observations: 23 AIC: 224.9
Df Residuals: 21 BIC: 227.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 186.4765 46.346 4.024 0.001 90.095 282.858
expression -18.7117 8.044 -2.326 0.030 -35.441 -1.982
Omnibus: 1.175 Durbin-Watson: 2.048
Prob(Omnibus): 0.556 Jarque-Bera (JB): 1.087
Skew: 0.396 Prob(JB): 0.581
Kurtosis: 2.288 Cond. No. 42.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
10.705 0.007 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.722
Model: OLS Adj. R-squared: 0.646
Method: Least Squares F-statistic: 9.504
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00218
Time: 22:41:31 Log-Likelihood: -65.710
No. Observations: 15 AIC: 139.4
Df Residuals: 11 BIC: 142.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -87.2529 128.470 -0.679 0.511 -370.013 195.507
C(dose)[T.1] -100.3324 162.767 -0.616 0.550 -458.581 257.916
expression 21.1257 17.507 1.207 0.253 -17.407 59.658
expression:C(dose)[T.1] 15.1257 21.153 0.715 0.489 -31.431 61.682
Omnibus: 0.474 Durbin-Watson: 1.549
Prob(Omnibus): 0.789 Jarque-Bera (JB): 0.547
Skew: 0.317 Prob(JB): 0.761
Kurtosis: 2.312 Cond. No. 326.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.709
Model: OLS Adj. R-squared: 0.660
Method: Least Squares F-statistic: 14.60
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000611
Time: 22:41:31 Log-Likelihood: -66.050
No. Observations: 15 AIC: 138.1
Df Residuals: 12 BIC: 140.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -163.1175 70.957 -2.299 0.040 -317.720 -8.515
C(dose)[T.1] 15.5140 15.392 1.008 0.333 -18.022 49.050
expression 31.4869 9.624 3.272 0.007 10.519 52.455
Omnibus: 0.310 Durbin-Watson: 1.327
Prob(Omnibus): 0.857 Jarque-Bera (JB): 0.461
Skew: 0.198 Prob(JB): 0.794
Kurtosis: 2.238 Cond. No. 101.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:41:31 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.684
Model: OLS Adj. R-squared: 0.660
Method: Least Squares F-statistic: 28.14
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000143
Time: 22:41:31 Log-Likelihood: -66.660
No. Observations: 15 AIC: 137.3
Df Residuals: 13 BIC: 138.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -206.0465 56.788 -3.628 0.003 -328.729 -83.364
expression 37.9745 7.159 5.305 0.000 22.509 53.440
Omnibus: 0.933 Durbin-Watson: 1.651
Prob(Omnibus): 0.627 Jarque-Bera (JB): 0.098
Skew: 0.173 Prob(JB): 0.952
Kurtosis: 3.194 Cond. No. 80.1