AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.815 0.377 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 13.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.82e-05
Time: 04:04:12 Log-Likelihood: -99.950
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -64.9206 86.380 -0.752 0.462 -245.717 115.875
C(dose)[T.1] 184.0239 120.448 1.528 0.143 -68.076 436.124
expression 16.6029 12.010 1.382 0.183 -8.535 41.741
expression:C(dose)[T.1] -18.3431 17.410 -1.054 0.305 -54.783 18.096
Omnibus: 0.062 Durbin-Watson: 1.982
Prob(Omnibus): 0.970 Jarque-Bera (JB): 0.266
Skew: 0.074 Prob(JB): 0.876
Kurtosis: 2.495 Cond. No. 256.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.66
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.90e-05
Time: 04:04:12 Log-Likelihood: -100.60
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.2849 62.841 -0.036 0.971 -133.368 128.798
C(dose)[T.1] 57.5369 9.774 5.887 0.000 37.149 77.925
expression 7.8734 8.719 0.903 0.377 -10.314 26.060
Omnibus: 0.368 Durbin-Watson: 2.002
Prob(Omnibus): 0.832 Jarque-Bera (JB): 0.080
Skew: 0.142 Prob(JB): 0.961
Kurtosis: 2.947 Cond. No. 104.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:04:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.079
Model: OLS Adj. R-squared: 0.035
Method: Least Squares F-statistic: 1.790
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.195
Time: 04:04:12 Log-Likelihood: -112.16
No. Observations: 23 AIC: 228.3
Df Residuals: 21 BIC: 230.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 194.2403 85.890 2.261 0.034 15.622 372.859
expression -16.5494 12.371 -1.338 0.195 -42.277 9.178
Omnibus: 1.511 Durbin-Watson: 2.106
Prob(Omnibus): 0.470 Jarque-Bera (JB): 0.970
Skew: 0.124 Prob(JB): 0.616
Kurtosis: 2.025 Cond. No. 87.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.408 0.535 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.559
Model: OLS Adj. R-squared: 0.438
Method: Least Squares F-statistic: 4.641
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0248
Time: 04:04:12 Log-Likelihood: -69.166
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -136.2774 189.279 -0.720 0.487 -552.878 280.323
C(dose)[T.1] 372.4569 212.113 1.756 0.107 -94.400 839.314
expression 32.2455 29.913 1.078 0.304 -33.594 98.085
expression:C(dose)[T.1] -50.0862 33.116 -1.512 0.159 -122.974 22.802
Omnibus: 1.733 Durbin-Watson: 1.070
Prob(Omnibus): 0.421 Jarque-Bera (JB): 1.276
Skew: -0.521 Prob(JB): 0.528
Kurtosis: 2.022 Cond. No. 298.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 5.255
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0230
Time: 04:04:12 Log-Likelihood: -70.582
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 121.8965 86.057 1.416 0.182 -65.606 309.400
C(dose)[T.1] 52.5063 16.324 3.217 0.007 16.939 88.073
expression -8.6220 13.504 -0.638 0.535 -38.045 20.802
Omnibus: 2.189 Durbin-Watson: 0.755
Prob(Omnibus): 0.335 Jarque-Bera (JB): 1.694
Skew: -0.731 Prob(JB): 0.429
Kurtosis: 2.242 Cond. No. 75.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:04:12 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.069
Method: Least Squares F-statistic: 0.09492
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.763
Time: 04:04:12 Log-Likelihood: -75.246
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 59.9309 109.964 0.545 0.595 -177.633 297.494
expression 5.1725 16.789 0.308 0.763 -31.097 41.442
Omnibus: 0.581 Durbin-Watson: 1.575
Prob(Omnibus): 0.748 Jarque-Bera (JB): 0.581
Skew: 0.106 Prob(JB): 0.748
Kurtosis: 2.059 Cond. No. 72.8