AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.241 0.629 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.19
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000112
Time: 04:52:00 Log-Likelihood: -100.77
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -5.5983 85.865 -0.065 0.949 -185.316 174.119
C(dose)[T.1] 123.5223 137.299 0.900 0.380 -163.848 410.893
expression 8.7322 12.505 0.698 0.493 -17.441 34.905
expression:C(dose)[T.1] -10.2329 19.888 -0.515 0.613 -51.858 31.392
Omnibus: 0.406 Durbin-Watson: 1.714
Prob(Omnibus): 0.816 Jarque-Bera (JB): 0.530
Skew: -0.027 Prob(JB): 0.767
Kurtosis: 2.258 Cond. No. 270.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.51e-05
Time: 04:52:00 Log-Likelihood: -100.92
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.1100 65.639 0.337 0.740 -114.810 159.030
C(dose)[T.1] 53.0255 8.741 6.067 0.000 34.793 71.258
expression 4.6866 9.543 0.491 0.629 -15.220 24.593
Omnibus: 0.173 Durbin-Watson: 1.785
Prob(Omnibus): 0.917 Jarque-Bera (JB): 0.380
Skew: 0.097 Prob(JB): 0.827
Kurtosis: 2.401 Cond. No. 106.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:52:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.032
Method: Least Squares F-statistic: 0.3225
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.576
Time: 04:52:00 Log-Likelihood: -112.93
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 18.5467 107.950 0.172 0.865 -205.947 243.041
expression 8.8900 15.654 0.568 0.576 -23.664 41.444
Omnibus: 1.953 Durbin-Watson: 2.388
Prob(Omnibus): 0.377 Jarque-Bera (JB): 1.338
Skew: 0.350 Prob(JB): 0.512
Kurtosis: 2.048 Cond. No. 106.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.884 0.115 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.567
Model: OLS Adj. R-squared: 0.449
Method: Least Squares F-statistic: 4.806
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0224
Time: 04:52:00 Log-Likelihood: -69.018
No. Observations: 15 AIC: 146.0
Df Residuals: 11 BIC: 148.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 214.3929 139.904 1.532 0.154 -93.534 522.319
C(dose)[T.1] 162.1941 234.981 0.690 0.504 -354.995 679.383
expression -20.1848 19.159 -1.054 0.315 -62.354 21.985
expression:C(dose)[T.1] -18.4975 33.972 -0.544 0.597 -93.268 56.274
Omnibus: 0.216 Durbin-Watson: 1.085
Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.121
Skew: 0.162 Prob(JB): 0.941
Kurtosis: 2.702 Cond. No. 283.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.556
Model: OLS Adj. R-squared: 0.482
Method: Least Squares F-statistic: 7.501
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00771
Time: 04:52:00 Log-Likelihood: -69.218
No. Observations: 15 AIC: 144.4
Df Residuals: 12 BIC: 146.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 257.2313 112.244 2.292 0.041 12.673 501.790
C(dose)[T.1] 34.5851 16.546 2.090 0.059 -1.465 70.636
expression -26.0684 15.351 -1.698 0.115 -59.515 7.378
Omnibus: 0.199 Durbin-Watson: 0.922
Prob(Omnibus): 0.906 Jarque-Bera (JB): 0.385
Skew: -0.161 Prob(JB): 0.825
Kurtosis: 2.284 Cond. No. 114.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:52:00 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.394
Model: OLS Adj. R-squared: 0.347
Method: Least Squares F-statistic: 8.444
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0123
Time: 04:52:00 Log-Likelihood: -71.546
No. Observations: 15 AIC: 147.1
Df Residuals: 13 BIC: 148.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 392.1768 103.033 3.806 0.002 169.588 614.766
expression -42.7541 14.713 -2.906 0.012 -74.540 -10.968
Omnibus: 1.182 Durbin-Watson: 1.348
Prob(Omnibus): 0.554 Jarque-Bera (JB): 0.345
Skew: 0.369 Prob(JB): 0.841
Kurtosis: 3.093 Cond. No. 93.0