AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.019 | 0.890 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.721 |
Model: | OLS | Adj. R-squared: | 0.677 |
Method: | Least Squares | F-statistic: | 16.34 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.71e-05 |
Time: | 23:03:02 | Log-Likelihood: | -98.437 |
No. Observations: | 23 | AIC: | 204.9 |
Df Residuals: | 19 | BIC: | 209.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 152.0935 | 52.984 | 2.871 | 0.010 | 41.197 262.990 |
C(dose)[T.1] | -83.3870 | 62.467 | -1.335 | 0.198 | -214.132 47.358 |
expression | -30.6799 | 16.515 | -1.858 | 0.079 | -65.246 3.887 |
expression:C(dose)[T.1] | 41.4744 | 18.834 | 2.202 | 0.040 | 2.054 80.895 |
Omnibus: | 0.476 | Durbin-Watson: | 2.136 |
Prob(Omnibus): | 0.788 | Jarque-Bera (JB): | 0.594 |
Skew: | 0.189 | Prob(JB): | 0.743 |
Kurtosis: | 2.310 | Cond. No. | 85.4 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.52 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.81e-05 |
Time: | 23:03:02 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 50.3481 | 28.317 | 1.778 | 0.091 | -8.721 109.417 |
C(dose)[T.1] | 52.8441 | 9.451 | 5.592 | 0.000 | 33.130 72.558 |
expression | 1.2099 | 8.670 | 0.140 | 0.890 | -16.875 19.294 |
Omnibus: | 0.379 | Durbin-Watson: | 1.862 |
Prob(Omnibus): | 0.827 | Jarque-Bera (JB): | 0.518 |
Skew: | 0.061 | Prob(JB): | 0.772 |
Kurtosis: | 2.275 | Cond. No. | 24.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:03:02 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.101 |
Model: | OLS | Adj. R-squared: | 0.059 |
Method: | Least Squares | F-statistic: | 2.367 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.139 |
Time: | 23:03:03 | Log-Likelihood: | -111.88 |
No. Observations: | 23 | AIC: | 227.8 |
Df Residuals: | 21 | BIC: | 230.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 14.2736 | 43.080 | 0.331 | 0.744 | -75.317 103.864 |
expression | 19.3311 | 12.564 | 1.539 | 0.139 | -6.797 45.459 |
Omnibus: | 0.209 | Durbin-Watson: | 2.205 |
Prob(Omnibus): | 0.901 | Jarque-Bera (JB): | 0.408 |
Skew: | 0.111 | Prob(JB): | 0.816 |
Kurtosis: | 2.387 | Cond. No. | 23.4 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.639 | 0.225 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.587 |
Model: | OLS | Adj. R-squared: | 0.474 |
Method: | Least Squares | F-statistic: | 5.213 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0175 |
Time: | 23:03:03 | Log-Likelihood: | -68.667 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 11 | BIC: | 148.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 175.9345 | 143.392 | 1.227 | 0.245 | -139.668 491.538 |
C(dose)[T.1] | -198.7671 | 164.052 | -1.212 | 0.251 | -559.844 162.310 |
expression | -29.3264 | 38.653 | -0.759 | 0.464 | -114.401 55.749 |
expression:C(dose)[T.1] | 58.1393 | 41.966 | 1.385 | 0.193 | -34.228 150.507 |
Omnibus: | 4.346 | Durbin-Watson: | 1.135 |
Prob(Omnibus): | 0.114 | Jarque-Bera (JB): | 2.627 |
Skew: | -1.025 | Prob(JB): | 0.269 |
Kurtosis: | 3.052 | Cond. No. | 169. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.515 |
Model: | OLS | Adj. R-squared: | 0.434 |
Method: | Least Squares | F-statistic: | 6.371 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0130 |
Time: | 23:03:03 | Log-Likelihood: | -69.873 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -6.5525 | 58.787 | -0.111 | 0.913 | -134.639 121.534 |
C(dose)[T.1] | 26.3989 | 23.132 | 1.141 | 0.276 | -24.002 76.800 |
expression | 19.9952 | 15.619 | 1.280 | 0.225 | -14.036 54.026 |
Omnibus: | 3.143 | Durbin-Watson: | 0.544 |
Prob(Omnibus): | 0.208 | Jarque-Bera (JB): | 2.142 |
Skew: | -0.910 | Prob(JB): | 0.343 |
Kurtosis: | 2.666 | Cond. No. | 38.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:03:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.421 |
Method: | Least Squares | F-statistic: | 11.18 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00528 |
Time: | 23:03:03 | Log-Likelihood: | -70.646 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 13 | BIC: | 146.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -51.5894 | 44.076 | -1.170 | 0.263 | -146.810 43.631 |
expression | 33.7176 | 10.084 | 3.344 | 0.005 | 11.933 55.503 |
Omnibus: | 1.746 | Durbin-Watson: | 0.728 |
Prob(Omnibus): | 0.418 | Jarque-Bera (JB): | 1.388 |
Skew: | -0.644 | Prob(JB): | 0.500 |
Kurtosis: | 2.252 | Cond. No. | 27.2 |