AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.426 | 0.246 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.740 |
Model: | OLS | Adj. R-squared: | 0.699 |
Method: | Least Squares | F-statistic: | 18.04 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 8.69e-06 |
Time: | 23:00:40 | Log-Likelihood: | -97.605 |
No. Observations: | 23 | AIC: | 203.2 |
Df Residuals: | 19 | BIC: | 207.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 70.4494 | 248.060 | 0.284 | 0.779 | -448.746 589.645 |
C(dose)[T.1] | 1207.2778 | 516.871 | 2.336 | 0.031 | 125.454 2289.101 |
expression | -1.5217 | 23.237 | -0.065 | 0.948 | -50.157 47.113 |
expression:C(dose)[T.1] | -106.8522 | 47.993 | -2.226 | 0.038 | -207.303 -6.402 |
Omnibus: | 1.653 | Durbin-Watson: | 1.918 |
Prob(Omnibus): | 0.438 | Jarque-Bera (JB): | 1.435 |
Skew: | 0.492 | Prob(JB): | 0.488 |
Kurtosis: | 2.272 | Cond. No. | 1.70e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.672 |
Model: | OLS | Adj. R-squared: | 0.640 |
Method: | Least Squares | F-statistic: | 20.53 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.42e-05 |
Time: | 23:00:40 | Log-Likelihood: | -100.27 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 20 | BIC: | 209.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 337.7856 | 237.566 | 1.422 | 0.170 | -157.768 833.339 |
C(dose)[T.1] | 56.6517 | 8.916 | 6.354 | 0.000 | 38.053 75.251 |
expression | -26.5699 | 22.252 | -1.194 | 0.246 | -72.987 19.847 |
Omnibus: | 2.200 | Durbin-Watson: | 2.140 |
Prob(Omnibus): | 0.333 | Jarque-Bera (JB): | 1.142 |
Skew: | 0.111 | Prob(JB): | 0.565 |
Kurtosis: | 1.931 | Cond. No. | 608. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:00:40 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.036 |
Method: | Least Squares | F-statistic: | 0.2368 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.632 |
Time: | 23:00:40 | Log-Likelihood: | -112.98 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -107.5504 | 384.869 | -0.279 | 0.783 | -907.929 692.828 |
expression | 17.4486 | 35.854 | 0.487 | 0.632 | -57.113 92.011 |
Omnibus: | 2.701 | Durbin-Watson: | 2.373 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.488 |
Skew: | 0.319 | Prob(JB): | 0.475 |
Kurtosis: | 1.930 | Cond. No. | 581. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
10.606 | 0.007 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.714 |
Model: | OLS | Adj. R-squared: | 0.637 |
Method: | Least Squares | F-statistic: | 9.175 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00249 |
Time: | 23:00:40 | Log-Likelihood: | -65.899 |
No. Observations: | 15 | AIC: | 139.8 |
Df Residuals: | 11 | BIC: | 142.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -548.1891 | 338.881 | -1.618 | 0.134 | -1294.062 197.684 |
C(dose)[T.1] | -200.1063 | 472.012 | -0.424 | 0.680 | -1238.998 838.785 |
expression | 59.2009 | 32.578 | 1.817 | 0.097 | -12.503 130.904 |
expression:C(dose)[T.1] | 23.6596 | 45.294 | 0.522 | 0.612 | -76.031 123.350 |
Omnibus: | 0.140 | Durbin-Watson: | 1.540 |
Prob(Omnibus): | 0.932 | Jarque-Bera (JB): | 0.103 |
Skew: | -0.118 | Prob(JB): | 0.950 |
Kurtosis: | 2.670 | Cond. No. | 1.13e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.707 |
Model: | OLS | Adj. R-squared: | 0.659 |
Method: | Least Squares | F-statistic: | 14.51 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000628 |
Time: | 23:00:40 | Log-Likelihood: | -66.083 |
No. Observations: | 15 | AIC: | 138.2 |
Df Residuals: | 12 | BIC: | 140.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -675.4695 | 228.270 | -2.959 | 0.012 | -1172.827 -178.112 |
C(dose)[T.1] | 46.3757 | 11.500 | 4.033 | 0.002 | 21.319 71.433 |
expression | 71.4408 | 21.937 | 3.257 | 0.007 | 23.645 119.237 |
Omnibus: | 0.040 | Durbin-Watson: | 1.559 |
Prob(Omnibus): | 0.980 | Jarque-Bera (JB): | 0.229 |
Skew: | -0.092 | Prob(JB): | 0.892 |
Kurtosis: | 2.423 | Cond. No. | 420. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:00:40 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.311 |
Model: | OLS | Adj. R-squared: | 0.258 |
Method: | Least Squares | F-statistic: | 5.864 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0308 |
Time: | 23:00:41 | Log-Likelihood: | -72.508 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 13 | BIC: | 150.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -720.1583 | 336.172 | -2.142 | 0.052 | -1446.414 6.098 |
expression | 78.1033 | 32.252 | 2.422 | 0.031 | 8.426 147.781 |
Omnibus: | 0.859 | Durbin-Watson: | 2.298 |
Prob(Omnibus): | 0.651 | Jarque-Bera (JB): | 0.783 |
Skew: | 0.341 | Prob(JB): | 0.676 |
Kurtosis: | 2.113 | Cond. No. | 419. |