AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.448 0.511 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000104
Time: 22:55:50 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -346.6841 493.713 -0.702 0.491 -1380.037 686.669
C(dose)[T.1] 419.9393 777.620 0.540 0.595 -1207.638 2047.516
expression 33.4636 41.208 0.812 0.427 -52.787 119.714
expression:C(dose)[T.1] -30.6914 63.695 -0.482 0.635 -164.006 102.623
Omnibus: 0.123 Durbin-Watson: 1.808
Prob(Omnibus): 0.940 Jarque-Bera (JB): 0.327
Skew: 0.106 Prob(JB): 0.849
Kurtosis: 2.456 Cond. No. 2.70e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.13
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.27e-05
Time: 22:55:50 Log-Likelihood: -100.81
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -192.7851 369.188 -0.522 0.607 -962.898 577.328
C(dose)[T.1] 45.3133 14.800 3.062 0.006 14.442 76.185
expression 20.6172 30.813 0.669 0.511 -43.658 84.892
Omnibus: 0.172 Durbin-Watson: 1.887
Prob(Omnibus): 0.918 Jarque-Bera (JB): 0.382
Skew: 0.079 Prob(JB): 0.826
Kurtosis: 2.389 Cond. No. 1.05e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:55:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.472
Method: Least Squares F-statistic: 20.65
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000177
Time: 22:55:50 Log-Likelihood: -105.23
No. Observations: 23 AIC: 214.5
Df Residuals: 21 BIC: 216.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1101.1345 259.883 -4.237 0.000 -1641.591 -560.678
expression 97.0611 21.357 4.545 0.000 52.646 141.476
Omnibus: 1.276 Durbin-Watson: 2.027
Prob(Omnibus): 0.528 Jarque-Bera (JB): 0.942
Skew: 0.192 Prob(JB): 0.624
Kurtosis: 2.086 Cond. No. 621.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.076 0.788 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.328
Method: Least Squares F-statistic: 3.278
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0625
Time: 22:55:50 Log-Likelihood: -70.510
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -97.8990 470.874 -0.208 0.839 -1134.287 938.489
C(dose)[T.1] 432.8980 595.201 0.727 0.482 -877.131 1742.927
expression 16.2905 46.383 0.351 0.732 -85.798 118.379
expression:C(dose)[T.1] -37.2233 58.036 -0.641 0.534 -164.959 90.513
Omnibus: 4.325 Durbin-Watson: 0.945
Prob(Omnibus): 0.115 Jarque-Bera (JB): 2.363
Skew: -0.963 Prob(JB): 0.307
Kurtosis: 3.260 Cond. No. 1.09e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.954
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0270
Time: 22:55:50 Log-Likelihood: -70.786
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 143.3979 276.140 0.519 0.613 -458.260 745.056
C(dose)[T.1] 51.3184 17.481 2.936 0.012 13.231 89.405
expression -7.4856 27.186 -0.275 0.788 -66.719 51.748
Omnibus: 3.189 Durbin-Watson: 0.736
Prob(Omnibus): 0.203 Jarque-Bera (JB): 2.026
Skew: -0.895 Prob(JB): 0.363
Kurtosis: 2.809 Cond. No. 368.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:55:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.059
Model: OLS Adj. R-squared: -0.014
Method: Least Squares F-statistic: 0.8125
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.384
Time: 22:55:50 Log-Likelihood: -74.845
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -191.6369 316.678 -0.605 0.555 -875.777 492.503
expression 27.6997 30.731 0.901 0.384 -38.690 94.090
Omnibus: 1.277 Durbin-Watson: 1.638
Prob(Omnibus): 0.528 Jarque-Bera (JB): 0.832
Skew: 0.188 Prob(JB): 0.660
Kurtosis: 1.909 Cond. No. 334.