AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.290 0.596 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.686
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 13.86
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.03e-05
Time: 22:48:42 Log-Likelihood: -99.770
No. Observations: 23 AIC: 207.5
Df Residuals: 19 BIC: 212.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 36.4755 32.973 1.106 0.282 -32.538 105.489
C(dose)[T.1] 117.4508 47.136 2.492 0.022 18.794 216.108
expression 4.1815 7.651 0.547 0.591 -11.831 20.195
expression:C(dose)[T.1] -15.7444 11.256 -1.399 0.178 -39.304 7.815
Omnibus: 1.397 Durbin-Watson: 1.651
Prob(Omnibus): 0.497 Jarque-Bera (JB): 0.949
Skew: 0.146 Prob(JB): 0.622
Kurtosis: 2.049 Cond. No. 62.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.91
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.45e-05
Time: 22:48:42 Log-Likelihood: -100.90
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.3198 25.094 2.683 0.014 14.975 119.664
C(dose)[T.1] 52.6274 8.806 5.976 0.000 34.258 70.997
expression -3.0918 5.744 -0.538 0.596 -15.074 8.891
Omnibus: 0.269 Durbin-Watson: 1.901
Prob(Omnibus): 0.874 Jarque-Bera (JB): 0.452
Skew: 0.049 Prob(JB): 0.798
Kurtosis: 2.320 Cond. No. 25.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:48:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.036
Model: OLS Adj. R-squared: -0.010
Method: Least Squares F-statistic: 0.7918
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.384
Time: 22:48:43 Log-Likelihood: -112.68
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 113.7234 38.867 2.926 0.008 32.895 194.552
expression -8.2320 9.251 -0.890 0.384 -27.471 11.007
Omnibus: 1.842 Durbin-Watson: 2.467
Prob(Omnibus): 0.398 Jarque-Bera (JB): 1.054
Skew: 0.111 Prob(JB): 0.590
Kurtosis: 1.975 Cond. No. 24.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.841 0.377 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.531
Model: OLS Adj. R-squared: 0.404
Method: Least Squares F-statistic: 4.159
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0339
Time: 22:48:43 Log-Likelihood: -69.614
No. Observations: 15 AIC: 147.2
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -249.0278 232.140 -1.073 0.306 -759.964 261.909
C(dose)[T.1] 328.4641 267.720 1.227 0.245 -260.784 917.712
expression 44.6695 32.731 1.365 0.200 -27.370 116.709
expression:C(dose)[T.1] -39.4315 37.709 -1.046 0.318 -122.429 43.566
Omnibus: 2.027 Durbin-Watson: 1.275
Prob(Omnibus): 0.363 Jarque-Bera (JB): 1.446
Skew: -0.725 Prob(JB): 0.485
Kurtosis: 2.540 Cond. No. 382.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.485
Model: OLS Adj. R-squared: 0.399
Method: Least Squares F-statistic: 5.648
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0187
Time: 22:48:43 Log-Likelihood: -70.325
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -38.5745 116.134 -0.332 0.746 -291.608 214.459
C(dose)[T.1] 48.9656 15.218 3.218 0.007 15.809 82.122
expression 14.9629 16.318 0.917 0.377 -20.590 50.516
Omnibus: 2.021 Durbin-Watson: 0.877
Prob(Omnibus): 0.364 Jarque-Bera (JB): 1.524
Skew: -0.633 Prob(JB): 0.467
Kurtosis: 2.086 Cond. No. 111.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:48:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.040
Model: OLS Adj. R-squared: -0.033
Method: Least Squares F-statistic: 0.5476
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.472
Time: 22:48:43 Log-Likelihood: -74.991
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -18.6192 152.068 -0.122 0.904 -347.143 309.904
expression 15.8314 21.394 0.740 0.472 -30.388 62.051
Omnibus: 1.381 Durbin-Watson: 1.619
Prob(Omnibus): 0.501 Jarque-Bera (JB): 0.933
Skew: 0.296 Prob(JB): 0.627
Kurtosis: 1.932 Cond. No. 111.