AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.816 0.026 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.737
Model: OLS Adj. R-squared: 0.696
Method: Least Squares F-statistic: 17.75
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.71e-06
Time: 05:11:58 Log-Likelihood: -97.742
No. Observations: 23 AIC: 203.5
Df Residuals: 19 BIC: 208.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 194.3072 168.929 1.150 0.264 -159.265 547.879
C(dose)[T.1] 205.0662 208.769 0.982 0.338 -231.893 642.026
expression -15.4468 18.616 -0.830 0.417 -54.411 23.517
expression:C(dose)[T.1] -18.9484 23.562 -0.804 0.431 -68.264 30.367
Omnibus: 0.755 Durbin-Watson: 2.139
Prob(Omnibus): 0.685 Jarque-Bera (JB): 0.554
Skew: 0.359 Prob(JB): 0.758
Kurtosis: 2.749 Cond. No. 655.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.728
Model: OLS Adj. R-squared: 0.701
Method: Least Squares F-statistic: 26.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.21e-06
Time: 05:11:58 Log-Likelihood: -98.127
No. Observations: 23 AIC: 202.3
Df Residuals: 20 BIC: 205.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 301.5907 102.718 2.936 0.008 87.325 515.856
C(dose)[T.1] 37.3752 10.168 3.676 0.001 16.165 58.586
expression -27.2756 11.310 -2.412 0.026 -50.868 -3.683
Omnibus: 1.400 Durbin-Watson: 2.196
Prob(Omnibus): 0.497 Jarque-Bera (JB): 0.700
Skew: 0.426 Prob(JB): 0.705
Kurtosis: 3.063 Cond. No. 238.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:11:58 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.544
Model: OLS Adj. R-squared: 0.523
Method: Least Squares F-statistic: 25.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.86e-05
Time: 05:11:58 Log-Likelihood: -104.06
No. Observations: 23 AIC: 212.1
Df Residuals: 21 BIC: 214.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 557.3251 95.459 5.838 0.000 358.808 755.842
expression -54.3362 10.846 -5.010 0.000 -76.892 -31.781
Omnibus: 0.972 Durbin-Watson: 2.309
Prob(Omnibus): 0.615 Jarque-Bera (JB): 0.949
Skew: 0.391 Prob(JB): 0.622
Kurtosis: 2.383 Cond. No. 175.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.365 0.059 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.597
Model: OLS Adj. R-squared: 0.487
Method: Least Squares F-statistic: 5.432
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0154
Time: 05:11:58 Log-Likelihood: -68.484
No. Observations: 15 AIC: 145.0
Df Residuals: 11 BIC: 147.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 334.6031 150.271 2.227 0.048 3.858 665.348
C(dose)[T.1] -0.0803 277.853 -0.000 1.000 -611.630 611.470
expression -29.0244 16.287 -1.782 0.102 -64.871 6.822
expression:C(dose)[T.1] 5.4682 30.042 0.182 0.859 -60.654 71.590
Omnibus: 1.591 Durbin-Watson: 1.434
Prob(Omnibus): 0.451 Jarque-Bera (JB): 0.923
Skew: -0.598 Prob(JB): 0.630
Kurtosis: 2.782 Cond. No. 453.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.596
Model: OLS Adj. R-squared: 0.528
Method: Least Squares F-statistic: 8.844
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00436
Time: 05:11:58 Log-Likelihood: -68.506
No. Observations: 15 AIC: 143.0
Df Residuals: 12 BIC: 145.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 319.8095 121.196 2.639 0.022 55.745 583.874
C(dose)[T.1] 50.4294 13.491 3.738 0.003 21.035 79.823
expression -27.4173 13.123 -2.089 0.059 -56.009 1.174
Omnibus: 1.401 Durbin-Watson: 1.417
Prob(Omnibus): 0.496 Jarque-Bera (JB): 0.852
Skew: -0.568 Prob(JB): 0.653
Kurtosis: 2.726 Cond. No. 169.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:11:58 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.125
Model: OLS Adj. R-squared: 0.058
Method: Least Squares F-statistic: 1.860
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.196
Time: 05:11:58 Log-Likelihood: -74.297
No. Observations: 15 AIC: 152.6
Df Residuals: 13 BIC: 154.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 326.9024 171.287 1.909 0.079 -43.141 696.946
expression -25.2716 18.531 -1.364 0.196 -65.305 14.762
Omnibus: 3.240 Durbin-Watson: 2.133
Prob(Omnibus): 0.198 Jarque-Bera (JB): 1.669
Skew: 0.529 Prob(JB): 0.434
Kurtosis: 1.754 Cond. No. 169.