AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.434 | 0.517 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 13.78 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.21e-05 |
Time: | 05:00:25 | Log-Likelihood: | -99.814 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -255.2313 | 210.646 | -1.212 | 0.240 | -696.119 185.656 |
C(dose)[T.1] | 381.9191 | 250.162 | 1.527 | 0.143 | -141.676 905.514 |
expression | 34.5786 | 23.530 | 1.470 | 0.158 | -14.669 83.827 |
expression:C(dose)[T.1] | -36.7113 | 27.914 | -1.315 | 0.204 | -95.136 21.713 |
Omnibus: | 0.094 | Durbin-Watson: | 1.389 |
Prob(Omnibus): | 0.954 | Jarque-Bera (JB): | 0.312 |
Skew: | -0.063 | Prob(JB): | 0.856 |
Kurtosis: | 2.444 | Cond. No. | 760. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.29e-05 |
Time: | 05:00:25 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -21.8018 | 115.490 | -0.189 | 0.852 | -262.711 219.107 |
C(dose)[T.1] | 53.1079 | 8.683 | 6.116 | 0.000 | 34.995 71.221 |
expression | 8.4938 | 12.888 | 0.659 | 0.517 | -18.390 35.378 |
Omnibus: | 0.519 | Durbin-Watson: | 1.774 |
Prob(Omnibus): | 0.771 | Jarque-Bera (JB): | 0.627 |
Skew: | 0.228 | Prob(JB): | 0.731 |
Kurtosis: | 2.332 | Cond. No. | 242. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:25 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.033 |
Method: | Least Squares | F-statistic: | 0.2994 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.590 |
Time: | 05:00:25 | Log-Likelihood: | -112.94 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -24.6992 | 190.950 | -0.129 | 0.898 | -421.802 372.403 |
expression | 11.6513 | 21.292 | 0.547 | 0.590 | -32.628 55.931 |
Omnibus: | 2.264 | Durbin-Watson: | 2.530 |
Prob(Omnibus): | 0.322 | Jarque-Bera (JB): | 1.559 |
Skew: | 0.423 | Prob(JB): | 0.459 |
Kurtosis: | 2.045 | Cond. No. | 242. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.836 | 0.200 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.523 |
Model: | OLS | Adj. R-squared: | 0.392 |
Method: | Least Squares | F-statistic: | 4.014 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0373 |
Time: | 05:00:25 | Log-Likelihood: | -69.754 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 11 | BIC: | 150.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 220.1809 | 124.483 | 1.769 | 0.105 | -53.805 494.167 |
C(dose)[T.1] | 5.2276 | 282.568 | 0.019 | 0.986 | -616.699 627.155 |
expression | -16.0510 | 13.028 | -1.232 | 0.244 | -44.725 12.623 |
expression:C(dose)[T.1] | 3.9878 | 30.978 | 0.129 | 0.900 | -64.195 72.171 |
Omnibus: | 2.803 | Durbin-Watson: | 0.870 |
Prob(Omnibus): | 0.246 | Jarque-Bera (JB): | 1.743 |
Skew: | -0.829 | Prob(JB): | 0.418 |
Kurtosis: | 2.808 | Cond. No. | 407. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.522 |
Model: | OLS | Adj. R-squared: | 0.442 |
Method: | Least Squares | F-statistic: | 6.550 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0119 |
Time: | 05:00:25 | Log-Likelihood: | -69.765 |
No. Observations: | 15 | AIC: | 145.5 |
Df Residuals: | 12 | BIC: | 147.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 213.4691 | 108.307 | 1.971 | 0.072 | -22.512 449.450 |
C(dose)[T.1] | 41.5411 | 15.709 | 2.644 | 0.021 | 7.314 75.768 |
expression | -15.3457 | 11.325 | -1.355 | 0.200 | -40.021 9.329 |
Omnibus: | 2.919 | Durbin-Watson: | 0.837 |
Prob(Omnibus): | 0.232 | Jarque-Bera (JB): | 1.815 |
Skew: | -0.847 | Prob(JB): | 0.404 |
Kurtosis: | 2.819 | Cond. No. | 139. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:25 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.243 |
Model: | OLS | Adj. R-squared: | 0.185 |
Method: | Least Squares | F-statistic: | 4.181 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0617 |
Time: | 05:00:25 | Log-Likelihood: | -73.209 |
No. Observations: | 15 | AIC: | 150.4 |
Df Residuals: | 13 | BIC: | 151.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 335.2559 | 118.487 | 2.829 | 0.014 | 79.280 591.231 |
expression | -26.1159 | 12.773 | -2.045 | 0.062 | -53.710 1.478 |
Omnibus: | 5.298 | Durbin-Watson: | 1.883 |
Prob(Omnibus): | 0.071 | Jarque-Bera (JB): | 1.539 |
Skew: | 0.238 | Prob(JB): | 0.463 |
Kurtosis: | 1.505 | Cond. No. | 126. |