AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.110 | 0.744 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 13.67 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.48e-05 |
Time: | 05:24:32 | Log-Likelihood: | -99.878 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 106.4145 | 72.117 | 1.476 | 0.156 | -44.529 257.358 |
C(dose)[T.1] | -90.1114 | 103.265 | -0.873 | 0.394 | -306.247 126.024 |
expression | -8.0920 | 11.141 | -0.726 | 0.476 | -31.410 15.226 |
expression:C(dose)[T.1] | 22.3607 | 16.024 | 1.395 | 0.179 | -11.178 55.900 |
Omnibus: | 0.914 | Durbin-Watson: | 1.876 |
Prob(Omnibus): | 0.633 | Jarque-Bera (JB): | 0.504 |
Skew: | 0.360 | Prob(JB): | 0.777 |
Kurtosis: | 2.911 | Cond. No. | 205. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.65 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.68e-05 |
Time: | 05:24:32 | Log-Likelihood: | -101.00 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 36.6843 | 53.216 | 0.689 | 0.499 | -74.322 147.691 |
C(dose)[T.1] | 53.4918 | 8.758 | 6.108 | 0.000 | 35.222 71.761 |
expression | 2.7163 | 8.195 | 0.331 | 0.744 | -14.378 19.811 |
Omnibus: | 0.321 | Durbin-Watson: | 1.880 |
Prob(Omnibus): | 0.852 | Jarque-Bera (JB): | 0.488 |
Skew: | 0.100 | Prob(JB): | 0.784 |
Kurtosis: | 2.315 | Cond. No. | 80.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:24:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 1.329e-05 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.997 |
Time: | 05:24:32 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 79.4009 | 87.143 | 0.911 | 0.373 | -101.824 260.625 |
expression | 0.0493 | 13.518 | 0.004 | 0.997 | -28.063 28.162 |
Omnibus: | 3.308 | Durbin-Watson: | 2.490 |
Prob(Omnibus): | 0.191 | Jarque-Bera (JB): | 1.569 |
Skew: | 0.289 | Prob(JB): | 0.456 |
Kurtosis: | 1.858 | Cond. No. | 79.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.026 | 0.874 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.569 |
Model: | OLS | Adj. R-squared: | 0.451 |
Method: | Least Squares | F-statistic: | 4.835 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0220 |
Time: | 05:24:32 | Log-Likelihood: | -68.992 |
No. Observations: | 15 | AIC: | 146.0 |
Df Residuals: | 11 | BIC: | 148.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 194.9863 | 108.232 | 1.802 | 0.099 | -43.231 433.204 |
C(dose)[T.1] | -195.8074 | 141.903 | -1.380 | 0.195 | -508.134 116.519 |
expression | -20.9755 | 17.712 | -1.184 | 0.261 | -59.959 18.008 |
expression:C(dose)[T.1] | 41.2373 | 23.695 | 1.740 | 0.110 | -10.915 93.389 |
Omnibus: | 2.081 | Durbin-Watson: | 1.281 |
Prob(Omnibus): | 0.353 | Jarque-Bera (JB): | 1.305 |
Skew: | -0.710 | Prob(JB): | 0.521 |
Kurtosis: | 2.735 | Cond. No. | 164. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.909 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0277 |
Time: | 05:24:32 | Log-Likelihood: | -70.817 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.8655 | 78.208 | 0.702 | 0.496 | -115.535 225.266 |
C(dose)[T.1] | 49.7849 | 16.135 | 3.086 | 0.009 | 14.631 84.939 |
expression | 2.0659 | 12.721 | 0.162 | 0.874 | -25.651 29.783 |
Omnibus: | 2.686 | Durbin-Watson: | 0.796 |
Prob(Omnibus): | 0.261 | Jarque-Bera (JB): | 1.831 |
Skew: | -0.837 | Prob(JB): | 0.400 |
Kurtosis: | 2.638 | Cond. No. | 61.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:24:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.062 |
Method: | Least Squares | F-statistic: | 0.1791 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.679 |
Time: | 05:24:33 | Log-Likelihood: | -75.197 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 133.6898 | 95.106 | 1.406 | 0.183 | -71.775 339.155 |
expression | -6.7500 | 15.949 | -0.423 | 0.679 | -41.207 27.707 |
Omnibus: | 1.474 | Durbin-Watson: | 1.636 |
Prob(Omnibus): | 0.479 | Jarque-Bera (JB): | 0.873 |
Skew: | 0.168 | Prob(JB): | 0.646 |
Kurtosis: | 1.867 | Cond. No. | 57.8 |