AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.023 0.097 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.721
Model: OLS Adj. R-squared: 0.678
Method: Least Squares F-statistic: 16.41
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.66e-05
Time: 04:17:55 Log-Likelihood: -98.405
No. Observations: 23 AIC: 204.8
Df Residuals: 19 BIC: 209.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -6.2823 94.103 -0.067 0.947 -203.242 190.677
C(dose)[T.1] -141.8313 152.741 -0.929 0.365 -461.522 177.859
expression 8.8975 13.817 0.644 0.527 -20.023 37.818
expression:C(dose)[T.1] 31.4579 23.468 1.340 0.196 -17.660 80.576
Omnibus: 0.605 Durbin-Watson: 2.164
Prob(Omnibus): 0.739 Jarque-Bera (JB): 0.670
Skew: -0.198 Prob(JB): 0.716
Kurtosis: 2.264 Cond. No. 312.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.695
Model: OLS Adj. R-squared: 0.665
Method: Least Squares F-statistic: 22.80
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.93e-06
Time: 04:17:55 Log-Likelihood: -99.444
No. Observations: 23 AIC: 204.9
Df Residuals: 20 BIC: 208.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -80.4241 77.634 -1.036 0.313 -242.367 81.518
C(dose)[T.1] 62.5149 9.730 6.425 0.000 42.219 82.811
expression 19.8028 11.389 1.739 0.097 -3.954 43.559
Omnibus: 2.923 Durbin-Watson: 2.248
Prob(Omnibus): 0.232 Jarque-Bera (JB): 1.513
Skew: -0.304 Prob(JB): 0.469
Kurtosis: 1.900 Cond. No. 129.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:17:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.066
Model: OLS Adj. R-squared: 0.021
Method: Least Squares F-statistic: 1.481
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.237
Time: 04:17:55 Log-Likelihood: -112.32
No. Observations: 23 AIC: 228.6
Df Residuals: 21 BIC: 230.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 210.5488 107.718 1.955 0.064 -13.462 434.560
expression -19.8923 16.344 -1.217 0.237 -53.881 14.096
Omnibus: 2.480 Durbin-Watson: 2.016
Prob(Omnibus): 0.289 Jarque-Bera (JB): 1.492
Skew: 0.353 Prob(JB): 0.474
Kurtosis: 1.972 Cond. No. 104.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.441 0.253 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.508
Model: OLS Adj. R-squared: 0.374
Method: Least Squares F-statistic: 3.790
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0434
Time: 04:17:55 Log-Likelihood: -69.976
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 182.9929 123.132 1.486 0.165 -88.019 454.005
C(dose)[T.1] 31.5960 192.215 0.164 0.872 -391.467 454.659
expression -20.3013 21.539 -0.943 0.366 -67.708 27.105
expression:C(dose)[T.1] 3.2493 33.475 0.097 0.924 -70.428 76.927
Omnibus: 3.187 Durbin-Watson: 1.200
Prob(Omnibus): 0.203 Jarque-Bera (JB): 1.671
Skew: -0.815 Prob(JB): 0.434
Kurtosis: 3.122 Cond. No. 188.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.508
Model: OLS Adj. R-squared: 0.426
Method: Least Squares F-statistic: 6.192
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0142
Time: 04:17:55 Log-Likelihood: -69.983
No. Observations: 15 AIC: 146.0
Df Residuals: 12 BIC: 148.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 175.3352 90.554 1.936 0.077 -21.965 372.635
C(dose)[T.1] 50.1924 14.895 3.370 0.006 17.738 82.647
expression -18.9561 15.793 -1.200 0.253 -53.366 15.454
Omnibus: 3.243 Durbin-Watson: 1.178
Prob(Omnibus): 0.198 Jarque-Bera (JB): 1.653
Skew: -0.808 Prob(JB): 0.438
Kurtosis: 3.175 Cond. No. 72.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:17:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.042
Model: OLS Adj. R-squared: -0.031
Method: Least Squares F-statistic: 0.5725
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.463
Time: 04:17:55 Log-Likelihood: -74.977
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 185.1454 121.310 1.526 0.151 -76.930 447.221
expression -15.9914 21.135 -0.757 0.463 -61.651 29.668
Omnibus: 0.720 Durbin-Watson: 1.779
Prob(Omnibus): 0.698 Jarque-Bera (JB): 0.648
Skew: 0.161 Prob(JB): 0.723
Kurtosis: 2.034 Cond. No. 72.1