AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.016 | 0.899 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 12.69 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.76e-05 |
Time: | 03:53:03 | Log-Likelihood: | -100.46 |
No. Observations: | 23 | AIC: | 208.9 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 239.7481 | 268.815 | 0.892 | 0.384 | -322.888 802.384 |
C(dose)[T.1] | -287.8500 | 341.163 | -0.844 | 0.409 | -1001.913 426.213 |
expression | -18.9201 | 27.405 | -0.690 | 0.498 | -76.279 38.439 |
expression:C(dose)[T.1] | 35.8161 | 35.645 | 1.005 | 0.328 | -38.790 110.422 |
Omnibus: | 0.012 | Durbin-Watson: | 1.915 |
Prob(Omnibus): | 0.994 | Jarque-Bera (JB): | 0.111 |
Skew: | -0.018 | Prob(JB): | 0.946 |
Kurtosis: | 2.661 | Cond. No. | 1.01e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.81e-05 |
Time: | 03:53:03 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 32.1391 | 172.001 | 0.187 | 0.854 | -326.648 390.927 |
C(dose)[T.1] | 54.6748 | 13.616 | 4.015 | 0.001 | 26.272 83.078 |
expression | 2.2505 | 17.529 | 0.128 | 0.899 | -34.313 38.814 |
Omnibus: | 0.318 | Durbin-Watson: | 1.883 |
Prob(Omnibus): | 0.853 | Jarque-Bera (JB): | 0.482 |
Skew: | 0.049 | Prob(JB): | 0.786 |
Kurtosis: | 2.297 | Cond. No. | 379. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:53:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.367 |
Model: | OLS | Adj. R-squared: | 0.336 |
Method: | Least Squares | F-statistic: | 12.16 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00220 |
Time: | 03:53:03 | Log-Likelihood: | -107.85 |
No. Observations: | 23 | AIC: | 219.7 |
Df Residuals: | 21 | BIC: | 222.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 571.1282 | 141.053 | 4.049 | 0.001 | 277.792 864.464 |
expression | -51.6067 | 14.801 | -3.487 | 0.002 | -82.387 -20.827 |
Omnibus: | 2.434 | Durbin-Watson: | 2.169 |
Prob(Omnibus): | 0.296 | Jarque-Bera (JB): | 1.419 |
Skew: | 0.316 | Prob(JB): | 0.492 |
Kurtosis: | 1.961 | Cond. No. | 237. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.310 | 0.094 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.604 |
Model: | OLS | Adj. R-squared: | 0.496 |
Method: | Least Squares | F-statistic: | 5.584 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0142 |
Time: | 03:53:03 | Log-Likelihood: | -68.360 |
No. Observations: | 15 | AIC: | 144.7 |
Df Residuals: | 11 | BIC: | 147.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -645.5025 | 629.915 | -1.025 | 0.327 | -2031.936 740.931 |
C(dose)[T.1] | -1280.2715 | 1334.166 | -0.960 | 0.358 | -4216.751 1656.208 |
expression | 68.4614 | 60.482 | 1.132 | 0.282 | -64.658 201.581 |
expression:C(dose)[T.1] | 127.2217 | 127.885 | 0.995 | 0.341 | -154.251 408.694 |
Omnibus: | 4.648 | Durbin-Watson: | 1.053 |
Prob(Omnibus): | 0.098 | Jarque-Bera (JB): | 2.591 |
Skew: | -1.008 | Prob(JB): | 0.274 |
Kurtosis: | 3.281 | Cond. No. | 2.41e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.568 |
Model: | OLS | Adj. R-squared: | 0.496 |
Method: | Least Squares | F-statistic: | 7.888 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00650 |
Time: | 03:53:03 | Log-Likelihood: | -69.006 |
No. Observations: | 15 | AIC: | 144.0 |
Df Residuals: | 12 | BIC: | 146.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -941.8300 | 554.797 | -1.698 | 0.115 | -2150.628 266.968 |
C(dose)[T.1] | 46.9035 | 13.991 | 3.352 | 0.006 | 16.419 77.388 |
expression | 96.9172 | 53.267 | 1.819 | 0.094 | -19.142 212.976 |
Omnibus: | 3.030 | Durbin-Watson: | 1.187 |
Prob(Omnibus): | 0.220 | Jarque-Bera (JB): | 1.623 |
Skew: | -0.805 | Prob(JB): | 0.444 |
Kurtosis: | 3.062 | Cond. No. | 841. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:53:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.163 |
Model: | OLS | Adj. R-squared: | 0.099 |
Method: | Least Squares | F-statistic: | 2.538 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.135 |
Time: | 03:53:03 | Log-Likelihood: | -73.962 |
No. Observations: | 15 | AIC: | 151.9 |
Df Residuals: | 13 | BIC: | 153.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1084.5085 | 739.571 | -1.466 | 0.166 | -2682.255 513.238 |
expression | 113.0010 | 70.928 | 1.593 | 0.135 | -40.230 266.232 |
Omnibus: | 4.252 | Durbin-Watson: | 1.982 |
Prob(Omnibus): | 0.119 | Jarque-Bera (JB): | 1.311 |
Skew: | 0.077 | Prob(JB): | 0.519 |
Kurtosis: | 1.560 | Cond. No. | 837. |