AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.083 0.777 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000104
Time: 22:50:01 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.7049 78.677 1.127 0.274 -75.969 253.378
C(dose)[T.1] -16.6469 94.663 -0.176 0.862 -214.780 181.486
expression -5.1579 11.728 -0.440 0.665 -29.705 19.390
expression:C(dose)[T.1] 11.0505 14.589 0.757 0.458 -19.484 41.585
Omnibus: 0.011 Durbin-Watson: 1.758
Prob(Omnibus): 0.995 Jarque-Bera (JB): 0.159
Skew: 0.044 Prob(JB): 0.923
Kurtosis: 2.602 Cond. No. 194.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.61
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.72e-05
Time: 22:50:01 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.9385 46.545 0.880 0.390 -56.152 138.029
C(dose)[T.1] 54.6578 9.884 5.530 0.000 34.041 75.275
expression 1.9841 6.900 0.288 0.777 -12.410 16.378
Omnibus: 0.093 Durbin-Watson: 1.911
Prob(Omnibus): 0.954 Jarque-Bera (JB): 0.315
Skew: 0.049 Prob(JB): 0.854
Kurtosis: 2.435 Cond. No. 70.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:50:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.116
Model: OLS Adj. R-squared: 0.074
Method: Least Squares F-statistic: 2.758
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.112
Time: 22:50:01 Log-Likelihood: -111.69
No. Observations: 23 AIC: 227.4
Df Residuals: 21 BIC: 229.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 180.0300 60.781 2.962 0.007 53.629 306.431
expression -15.7483 9.483 -1.661 0.112 -35.468 3.972
Omnibus: 4.703 Durbin-Watson: 2.151
Prob(Omnibus): 0.095 Jarque-Bera (JB): 2.109
Skew: 0.427 Prob(JB): 0.348
Kurtosis: 1.787 Cond. No. 58.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.024 0.879 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.462
Model: OLS Adj. R-squared: 0.315
Method: Least Squares F-statistic: 3.148
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0687
Time: 22:50:01 Log-Likelihood: -70.651
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -45.0262 223.084 -0.202 0.844 -536.031 445.978
C(dose)[T.1] 177.9263 260.117 0.684 0.508 -394.588 750.440
expression 18.8162 37.274 0.505 0.624 -63.224 100.856
expression:C(dose)[T.1] -21.4976 43.264 -0.497 0.629 -116.720 73.725
Omnibus: 2.675 Durbin-Watson: 0.866
Prob(Omnibus): 0.263 Jarque-Bera (JB): 1.775
Skew: -0.828 Prob(JB): 0.412
Kurtosis: 2.687 Cond. No. 295.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.907
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0277
Time: 22:50:01 Log-Likelihood: -70.818
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.3422 110.085 0.457 0.656 -189.512 290.196
C(dose)[T.1] 48.9300 15.816 3.094 0.009 14.470 83.390
expression 2.8589 18.319 0.156 0.879 -37.055 42.773
Omnibus: 2.413 Durbin-Watson: 0.807
Prob(Omnibus): 0.299 Jarque-Bera (JB): 1.715
Skew: -0.796 Prob(JB): 0.424
Kurtosis: 2.545 Cond. No. 87.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:50:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.065
Method: Least Squares F-statistic: 0.1464
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.708
Time: 22:50:01 Log-Likelihood: -75.216
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.5778 141.734 0.279 0.784 -266.619 345.775
expression 8.9757 23.460 0.383 0.708 -41.706 59.658
Omnibus: 0.615 Durbin-Watson: 1.516
Prob(Omnibus): 0.735 Jarque-Bera (JB): 0.605
Skew: 0.152 Prob(JB): 0.739
Kurtosis: 2.064 Cond. No. 87.1