AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.571 0.459 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.612
Method: Least Squares F-statistic: 12.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.27e-05
Time: 05:01:10 Log-Likelihood: -100.53
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -56.2518 116.639 -0.482 0.635 -300.381 187.877
C(dose)[T.1] 154.7457 169.888 0.911 0.374 -200.834 510.325
expression 16.6228 17.529 0.948 0.355 -20.065 53.311
expression:C(dose)[T.1] -15.2459 25.678 -0.594 0.560 -68.990 38.498
Omnibus: 0.373 Durbin-Watson: 2.277
Prob(Omnibus): 0.830 Jarque-Bera (JB): 0.511
Skew: 0.004 Prob(JB): 0.774
Kurtosis: 2.270 Cond. No. 335.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.31
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.14e-05
Time: 05:01:10 Log-Likelihood: -100.74
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -9.0402 83.942 -0.108 0.915 -184.141 166.060
C(dose)[T.1] 54.0127 8.693 6.213 0.000 35.878 72.147
expression 9.5181 12.600 0.755 0.459 -16.765 35.801
Omnibus: 0.136 Durbin-Watson: 2.048
Prob(Omnibus): 0.934 Jarque-Bera (JB): 0.341
Skew: -0.106 Prob(JB): 0.843
Kurtosis: 2.442 Cond. No. 132.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:01:10 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.004896
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.945
Time: 05:01:10 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.0321 138.604 0.505 0.619 -218.211 358.275
expression 1.4650 20.937 0.070 0.945 -42.075 45.005
Omnibus: 3.529 Durbin-Watson: 2.500
Prob(Omnibus): 0.171 Jarque-Bera (JB): 1.616
Skew: 0.291 Prob(JB): 0.446
Kurtosis: 1.839 Cond. No. 130.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.647 0.437 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.482
Model: OLS Adj. R-squared: 0.341
Method: Least Squares F-statistic: 3.411
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0567
Time: 05:01:10 Log-Likelihood: -70.368
No. Observations: 15 AIC: 148.7
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.4388 220.034 0.616 0.551 -348.852 619.729
C(dose)[T.1] 152.1381 310.757 0.490 0.634 -531.834 836.111
expression -10.3535 33.450 -0.310 0.763 -83.976 63.269
expression:C(dose)[T.1] -15.1927 46.814 -0.325 0.752 -118.231 87.845
Omnibus: 1.774 Durbin-Watson: 0.816
Prob(Omnibus): 0.412 Jarque-Bera (JB): 1.340
Skew: -0.676 Prob(JB): 0.512
Kurtosis: 2.440 Cond. No. 354.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.390
Method: Least Squares F-statistic: 5.472
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0205
Time: 05:01:10 Log-Likelihood: -70.439
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 186.3895 148.305 1.257 0.233 -136.740 509.519
C(dose)[T.1] 51.4248 15.580 3.301 0.006 17.479 85.371
expression -18.1099 22.513 -0.804 0.437 -67.161 30.941
Omnibus: 1.907 Durbin-Watson: 0.819
Prob(Omnibus): 0.385 Jarque-Bera (JB): 1.447
Skew: -0.702 Prob(JB): 0.485
Kurtosis: 2.413 Cond. No. 132.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:01:10 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.075
Method: Least Squares F-statistic: 0.02775
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.870
Time: 05:01:10 Log-Likelihood: -75.284
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.1617 195.317 0.646 0.530 -295.795 548.119
expression -4.8979 29.400 -0.167 0.870 -68.413 58.617
Omnibus: 0.700 Durbin-Watson: 1.696
Prob(Omnibus): 0.705 Jarque-Bera (JB): 0.616
Skew: 0.054 Prob(JB): 0.735
Kurtosis: 2.013 Cond. No. 131.