AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.107 | 0.747 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 12.78 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.39e-05 |
Time: | 05:04:32 | Log-Likelihood: | -100.40 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -47.6107 | 123.322 | -0.386 | 0.704 | -305.728 210.506 |
C(dose)[T.1] | 273.0282 | 216.815 | 1.259 | 0.223 | -180.771 726.828 |
expression | 13.7197 | 16.597 | 0.827 | 0.419 | -21.019 48.458 |
expression:C(dose)[T.1] | -30.4040 | 30.196 | -1.007 | 0.327 | -93.605 32.797 |
Omnibus: | 0.228 | Durbin-Watson: | 1.895 |
Prob(Omnibus): | 0.892 | Jarque-Bera (JB): | 0.421 |
Skew: | 0.125 | Prob(JB): | 0.810 |
Kurtosis: | 2.386 | Cond. No. | 438. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.65 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.69e-05 |
Time: | 05:04:32 | Log-Likelihood: | -101.00 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 20.5581 | 103.112 | 0.199 | 0.844 | -194.531 235.647 |
C(dose)[T.1] | 54.9538 | 10.048 | 5.469 | 0.000 | 33.994 75.913 |
expression | 4.5342 | 13.870 | 0.327 | 0.747 | -24.398 33.467 |
Omnibus: | 0.188 | Durbin-Watson: | 1.918 |
Prob(Omnibus): | 0.910 | Jarque-Bera (JB): | 0.396 |
Skew: | 0.063 | Prob(JB): | 0.820 |
Kurtosis: | 2.370 | Cond. No. | 175. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:04:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.129 |
Model: | OLS | Adj. R-squared: | 0.087 |
Method: | Least Squares | F-statistic: | 3.106 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0926 |
Time: | 05:04:32 | Log-Likelihood: | -111.52 |
No. Observations: | 23 | AIC: | 227.0 |
Df Residuals: | 21 | BIC: | 229.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 317.5634 | 135.134 | 2.350 | 0.029 | 36.537 598.590 |
expression | -32.8024 | 18.614 | -1.762 | 0.093 | -71.512 5.907 |
Omnibus: | 0.847 | Durbin-Watson: | 2.351 |
Prob(Omnibus): | 0.655 | Jarque-Bera (JB): | 0.721 |
Skew: | 0.012 | Prob(JB): | 0.697 |
Kurtosis: | 2.133 | Cond. No. | 148. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.028 | 0.068 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.588 |
Model: | OLS | Adj. R-squared: | 0.475 |
Method: | Least Squares | F-statistic: | 5.222 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0174 |
Time: | 05:04:32 | Log-Likelihood: | -68.659 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 11 | BIC: | 148.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 398.1687 | 185.376 | 2.148 | 0.055 | -9.842 806.179 |
C(dose)[T.1] | 7.2216 | 446.250 | 0.016 | 0.987 | -974.968 989.411 |
expression | -43.6238 | 24.412 | -1.787 | 0.101 | -97.355 10.107 |
expression:C(dose)[T.1] | 4.4051 | 60.280 | 0.073 | 0.943 | -128.269 137.079 |
Omnibus: | 4.606 | Durbin-Watson: | 1.321 |
Prob(Omnibus): | 0.100 | Jarque-Bera (JB): | 2.399 |
Skew: | -0.956 | Prob(JB): | 0.301 |
Kurtosis: | 3.426 | Cond. No. | 561. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.587 |
Model: | OLS | Adj. R-squared: | 0.519 |
Method: | Least Squares | F-statistic: | 8.539 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00494 |
Time: | 05:04:32 | Log-Likelihood: | -68.662 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 12 | BIC: | 145.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 392.6911 | 162.367 | 2.419 | 0.032 | 38.923 746.459 |
C(dose)[T.1] | 39.8139 | 14.399 | 2.765 | 0.017 | 8.441 71.187 |
expression | -42.9014 | 21.376 | -2.007 | 0.068 | -89.475 3.672 |
Omnibus: | 4.554 | Durbin-Watson: | 1.308 |
Prob(Omnibus): | 0.103 | Jarque-Bera (JB): | 2.358 |
Skew: | -0.948 | Prob(JB): | 0.308 |
Kurtosis: | 3.427 | Cond. No. | 182. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:04:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.324 |
Model: | OLS | Adj. R-squared: | 0.272 |
Method: | Least Squares | F-statistic: | 6.241 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0267 |
Time: | 05:04:32 | Log-Likelihood: | -72.359 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 13 | BIC: | 150.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 557.1730 | 185.721 | 3.000 | 0.010 | 155.947 958.399 |
expression | -62.0906 | 24.854 | -2.498 | 0.027 | -115.784 -8.397 |
Omnibus: | 2.293 | Durbin-Watson: | 2.245 |
Prob(Omnibus): | 0.318 | Jarque-Bera (JB): | 1.212 |
Skew: | 0.353 | Prob(JB): | 0.545 |
Kurtosis: | 1.800 | Cond. No. | 169. |