AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.360 | 0.257 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.711 |
Model: | OLS | Adj. R-squared: | 0.665 |
Method: | Least Squares | F-statistic: | 15.57 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.36e-05 |
Time: | 22:47:56 | Log-Likelihood: | -98.834 |
No. Observations: | 23 | AIC: | 205.7 |
Df Residuals: | 19 | BIC: | 210.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -97.2911 | 90.256 | -1.078 | 0.295 | -286.200 91.618 |
C(dose)[T.1] | 503.5625 | 283.605 | 1.776 | 0.092 | -90.030 1097.155 |
expression | 20.4335 | 12.149 | 1.682 | 0.109 | -4.996 45.863 |
expression:C(dose)[T.1] | -58.3675 | 36.231 | -1.611 | 0.124 | -134.200 17.465 |
Omnibus: | 0.936 | Durbin-Watson: | 1.481 |
Prob(Omnibus): | 0.626 | Jarque-Bera (JB): | 0.914 |
Skew: | -0.396 | Prob(JB): | 0.633 |
Kurtosis: | 2.427 | Cond. No. | 624. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.671 |
Model: | OLS | Adj. R-squared: | 0.639 |
Method: | Least Squares | F-statistic: | 20.43 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.47e-05 |
Time: | 22:47:56 | Log-Likelihood: | -100.31 |
No. Observations: | 23 | AIC: | 206.6 |
Df Residuals: | 20 | BIC: | 210.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -48.6288 | 88.378 | -0.550 | 0.588 | -232.983 135.725 |
C(dose)[T.1] | 46.9483 | 10.101 | 4.648 | 0.000 | 25.878 68.018 |
expression | 13.8702 | 11.894 | 1.166 | 0.257 | -10.940 38.680 |
Omnibus: | 0.217 | Durbin-Watson: | 1.841 |
Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.418 |
Skew: | -0.051 | Prob(JB): | 0.812 |
Kurtosis: | 2.348 | Cond. No. | 163. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:47:56 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.316 |
Model: | OLS | Adj. R-squared: | 0.284 |
Method: | Least Squares | F-statistic: | 9.722 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00520 |
Time: | 22:47:56 | Log-Likelihood: | -108.73 |
No. Observations: | 23 | AIC: | 221.5 |
Df Residuals: | 21 | BIC: | 223.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -255.0858 | 107.542 | -2.372 | 0.027 | -478.731 -31.440 |
expression | 43.8536 | 14.064 | 3.118 | 0.005 | 14.605 73.102 |
Omnibus: | 1.791 | Durbin-Watson: | 2.239 |
Prob(Omnibus): | 0.408 | Jarque-Bera (JB): | 1.515 |
Skew: | 0.584 | Prob(JB): | 0.469 |
Kurtosis: | 2.537 | Cond. No. | 140. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.306 | 0.590 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.464 |
Model: | OLS | Adj. R-squared: | 0.318 |
Method: | Least Squares | F-statistic: | 3.179 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0672 |
Time: | 22:47:57 | Log-Likelihood: | -70.618 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 42.9134 | 215.145 | 0.199 | 0.846 | -430.618 516.445 |
C(dose)[T.1] | -1.1889 | 254.335 | -0.005 | 0.996 | -560.977 558.599 |
expression | 3.5050 | 30.713 | 0.114 | 0.911 | -64.095 71.105 |
expression:C(dose)[T.1] | 7.0873 | 36.178 | 0.196 | 0.848 | -72.539 86.714 |
Omnibus: | 2.908 | Durbin-Watson: | 0.896 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 1.811 |
Skew: | -0.846 | Prob(JB): | 0.404 |
Kurtosis: | 2.815 | Cond. No. | 332. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.373 |
Method: | Least Squares | F-statistic: | 5.162 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0241 |
Time: | 22:47:57 | Log-Likelihood: | -70.644 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 7.1862 | 109.469 | 0.066 | 0.949 | -231.327 245.699 |
C(dose)[T.1] | 48.5340 | 15.589 | 3.113 | 0.009 | 14.569 82.499 |
expression | 8.6131 | 15.567 | 0.553 | 0.590 | -25.304 42.530 |
Omnibus: | 2.741 | Durbin-Watson: | 0.914 |
Prob(Omnibus): | 0.254 | Jarque-Bera (JB): | 1.775 |
Skew: | -0.832 | Prob(JB): | 0.412 |
Kurtosis: | 2.734 | Cond. No. | 102. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:47:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.028 |
Model: | OLS | Adj. R-squared: | -0.046 |
Method: | Least Squares | F-statistic: | 0.3785 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.549 |
Time: | 22:47:57 | Log-Likelihood: | -75.085 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 6.8837 | 141.411 | 0.049 | 0.962 | -298.617 312.384 |
expression | 12.3353 | 20.050 | 0.615 | 0.549 | -30.979 55.650 |
Omnibus: | 0.489 | Durbin-Watson: | 1.718 |
Prob(Omnibus): | 0.783 | Jarque-Bera (JB): | 0.536 |
Skew: | 0.028 | Prob(JB): | 0.765 |
Kurtosis: | 2.076 | Cond. No. | 102. |